1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
/* ====================================================================== */
/* ========== lgotwist.c Sep 29 / 02 ================= */
/* ====================================================================== */
/* aao2.6
002244 4 3 4 3 4 3
-21 21 0 1
-19 19 0 2
-9 9 0 3
*/
#include <stdio.h>
#include <string.h>
#ifdef __MSDOS__
#define NM 9 /*13*/ /* maximum number of fields */
#define WM 1024 /*8192*/ /* maximum number of words */
/* (a word is binary code for a subset of X_i) */
#define NS 10 /*14*/ /* maximum number of generators */
#define HODDIM 500
#else
#define NM 13 /* maximum number of fields */
#define NS 14 /* maximum number of generators */
#define WM 8192 /* maximum number of words */
#define HODDIM 4000
#endif
#define NPN 1000
#define NP 10 /* maximum number of prime factors */
#define LONGOUT (0) /* (1) for long output, otherwise (0) */
#define ONLYINV (0) /* (1) iff only invertibles are computed */
#define MAXPN 512 /* maximum number of pointers at one point */
#define SAFER (1) /* SAFER=1 ==> b01 with rat, less danger of overflow */
#define ADDZD (0) /* ADDZD = 1 (0) iff Z_d is (not) to be added */
int mask[]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384};
int interb01(); /* ... interface to "mhodge" conventions */
FILE *infi, *outfi;
int stdi=0, bugcount=0, invertible;
/* stdi=1 if called without "infile" (see: main, readline) */
/* ====================================================================== */
/* ========== integer and rational stuff ========== */
/* ====================================================================== */
/* ========== rat.h (header -> #include "rat.h") ========== */
/* ====================================================================== */
#define lint long
#define sint int
#define mod(a,b) ((a)%(b)) /* ((a)-(b)*((a)/(b))) */
#define MOD(a,b) ((b) ? mod(a,b) : (a))
#define min(a,b) (((a)<(b)) ? (a) : (b))
#define max(a,b) (((a)>(b)) ? (a) : (b))
#define lcm(a,b) ((a)*(b)/gcd((a),(b)))
#define plcm(a,b) (a)*((b)/pgcd(a,b))
#define abs(a) (((a)<0) ? (-(a)) : (a))
lint gcd(lint a, lint b); /* modulus of greatest common div.; gcd(0,n)=|n| */
typedef struct {lint num; lint den;} rat;
rat rI(lint a); /* conversion lint -> rat */
rat rR(lint a, lint b); /* conversion a/b -> rat */
rat rS(rat a, rat b); /* a + b */
rat rD(rat a, rat b); /* a - b */
rat rP(rat a, rat b); /* a * b */
rat rQ(rat a, rat b); /* a / b */
void fS(rat *a, rat *b); /* fast sum: add rat *b to rat *a */
void iS(rat *a, int *b); /* fast sum: add int *b to rat *a */
/* ====================================================================== */
/* ========== rat.c (source code: cc -c rat.c generates rat.o) ========== */
/* ========== cc -o prog prog.c rat.o incl. obj. code rat.o ========== */
/* #include "rat.h" ================================================ */
rat rI(register lint a) {rat c; c.num=a; c.den=1; return c; } /* a/1 */
rat rR(register lint a, register lint b) /* a/b */
{ register lint g=gcd(a,b); rat c; g=(b<0) ? -g:g; c.num=a/g;c.den=b/g;
return c;
}
rat rS(rat a, rat b) /* a + b */
{ register rat c; register lint g=gcd(a.den,b.den);
g=gcd(c.den=a.den*(b.den/g),c.num=a.num*(b.den/g)+b.num*(a.den/g));
c.num/=g; c.den/=g; return c;
}
rat rD(rat a, rat b) /* a - b */
{ register rat c; register lint g=gcd(a.den,b.den);
g=gcd(c.den=a.den*(b.den/g),c.num=a.num*(b.den/g)-b.num*(a.den/g));
c.num/=g; c.den/=g; return c;
/** register rat c; register lint g=gcd(c.num=a.num*b.den-b.num*a.den,
c.den=a.den*b.den); c.num/=g; c.den/=g; return c; */
}
rat rP(rat a, rat b) /* a * b */
{ register lint g=gcd(a.num,b.den); register lint h=gcd(b.num,a.den);
register rat c; c.num=(a.num/g)*(b.num/h); c.den=(a.den/h)*(b.den/g);
return c;
}
rat rQ(rat a, rat b) /* a / b */
{ register lint g=gcd(a.num,b.num); register lint h=gcd(b.den,a.den);
register rat c; c.num=(a.num/g)*(b.den/h); c.den=(a.den/h)*(b.num/g);
#ifdef TEST
if (!c.den)
fprintf(outfi,"warning: vanishing denominator in rQ in %s!\n",infun);
#endif
if (c.den<0) {c.num=-c.num; c.den=-c.den;} return c;
}
lint gcd(register lint a, register lint b)
{ a = (a<0) ? -a:a; b = (b<0) ? -b:b; if (!a) return b; if (!b) return a;
{register lint c; while(c=mod(a,b)) {a=b;b=c;} return b;}
}
lint argint(char* s) /* string to integer */
{ lint d=(*s)-'0'; sint i=1; while(s[i]) d=10*d+s[i++]-'0'; return d;
}
void prat(rat a) {fprintf(outfi,"%ld/%ld ",a.num,a.den);}
/* ====================================================================== */
/* ========== end of integer and rational stuff ========== */
/* ====================================================================== */
/****************************************************************************/
/* Construction of the maximal abelian symmetry */
/****************************************************************************/
typedef sint spectrum[3]; /* b01 change */
typedef sint pointlist[NM+1];
typedef lint symlist[NS];
typedef sint primelist[NP];
typedef sint prsymlist[NS][NP];
typedef symlist symsymlist[NS];
typedef lint sympointlist[NM+1][NS];
typedef sint prsympointlist[NM+1][NS][NP];
typedef sint prsymsymlist[NS][NS][NP];
typedef lint worte[WM+1][3];
lint lcmd, specnum, symnum, totsymnum=0, totspecnum=0, maxsymnum=0,
maxspecnum=0, modelnum=0;
/* lcmd = least common multiple of the orders of the generators of the
maximal group */
sint n, norig, ns, npr, addsyms, evenn, oddd, over=1, D; /* D=sum(1-2q_i) */
/* n = number of points X_i; */
/* ns = number of phase symmetries, ns<NS */
/* npr = number of prime numbers involved, npr<NP */
/* redundant is the number of det=1 symmetries acting only in the
trivial sector */
symlist d, det;
/* d[0]=d, d[i]=order of i'th phase symmetry */
/* det[i]/d[i] = determinant of i'th symmetry */
/* the letters 'pr' in the name of a variable/field indicate that it is
the prime decomposed version of some other v./f., x=prod_i{prx[i]};
for explanations of spr.., npr.., aux.. and norm see reccon and fillup */
rat prdet[NS][NP];
primelist pr, prns, auxns;
/* pr is the list of prime numbers occurring in a specific model */
prsymlist prd, sprd, norm, auxd;
sympointlist wei;
/* n_i=wei[i-1][0]; phase of X_i under k'th symmetry =wei[i-1][k] */
prsympointlist prwei, nprwei, auxwei;
prsymsymlist sprwei;
spectrum hodlist[HODDIM];
/* ====================================================================== */
/* ========== abelmax ========== */
/* ====================================================================== */
typedef struct {int p[NM], a[NM], N;} skelet; /* p: pointer; a: exponent */
typedef struct {int p[NPN], m[NPN];} prili;/* p[0]=#(primes); m[0]=max mult.*/
int readline(skelet *); /* reads: "string[#+1] exp_0 ... exp_# ... \n" */
void analy(skelet); /* calculate: order of evaluation; loops; pointed at by;*/
prili pmax; /* global var. for prime decomposistion of lcm of group orders */
void printpri(prili);
int readline(skelet *s) /* reads: "string[#+1] exp_0 ... exp_# ... \n" */
{ int i; s->N=0; if(stdi) printf("skeleton? ");
while(' '!=(i=fgetc(infi))) if(i==EOF) return 0; else s->p[s->N++]=i-'0';
for(i=0;i<(s->N);i++) fscanf(infi,"%d",&s->a[i]);
n=(*s).N;
while(fgetc(infi)-'\n'); return 1;
}
long pgcd(register long a, register long b)
{ register long c; while(c=mod(a,b)) {a=b;b=c;} return b;
}
int prime[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,
89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,
193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,
421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,
659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,
797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,
929,937,941,947,953,967,971,977,983,991,997};
void printpri(prili li)
{ int i; fprintf(outfi,"\nlist of primes:\n");
for(i=1;i<=*li.p;i++) {fprintf(outfi,"%d,",li.p[i]);
if(!mod(i,20)) fprintf(outfi,"\n");}
fprintf(outfi,"\nmaximal multiplicities (in one generator):\n");
for(i=1;i<=*li.p;i++) {fprintf(outfi,"(%d,%d) ",li.p[i],li.m[i]);
if(!mod(i,10)) fprintf(outfi,"\n");}
fprintf(outfi,"\n");
}
prili prideco(long x)
{ int n=0,p; long q; prili l; *l.p=*l.m=1; l.m[1]=0;
while(x>=((p=prime[n++])^2)) {
while(!(x-p*(q=x/p))) {x=q; l.m[*l.p]++;}
if(l.m[*l.p]){l.p[*l.p]=p;*l.m=max(*l.m,l.m[*l.p]);l.m[++(*l.p)]=0;}}
if(x==1) (*l.p)--; else {l.m[*l.p]=1; l.p[*l.p]=x;} return l;
}
void maxpri(prili pn) /* pmax = prime decomposistion of lcm of group orders */
{ int i=1,j=1,n=1; prili po=pmax; *pmax.m=max(*po.m,*pn.m);
po.p[*po.p+1]=pn.p[*pn.p+1]=po.p[*po.p]+pn.p[*pn.p]+1;
if(*po.p){while((i<=*po.p)||(j<=*pn.p)) {
if(po.p[i]<pn.p[j]) {pmax.p[n]=po.p[i];pmax.m[n]=po.m[i++];}
else if(po.p[i]>pn.p[j]) {pmax.p[n]=pn.p[j];pmax.m[n]=pn.m[j++];}
else{pmax.m[n]=max(po.m[i],pn.m[j]);pmax.p[n]=po.p[i++];j++;}n++;}
*pmax.p=n-1;}
else pmax=pn; /* printpri(pmax); */
}
/* analy first finds all minimal member of loops (or fermats): value = i *
* for any such i its connected component of the graph is reconstructed: *
* i=lo[1] -> lo[2] -> ... -> lo[*lo] -> i; *
* the remaining variables are on "ord[1],...,ord[*ord]" such that all *
* pointers go from right to left (or from ord to lo, of course). *
* inv[k][1],...,inv[k][*inv[k]] are all variables pointing at k. */
/* Now go thru ord from right to left and calculate lcm=prod(t) with t_k *
* dividing the corresponding exponent s.a[], divide the orders of the *
* groups corresponding to inv[] by t_k and evaluate the new generator */
/* finally repeat this for the loop of i and evaluate its symm.-generator */
void analy(skelet s)
{ long ph[NM][NM+1], /* p[i][0] = order of sym. i<s.N */
d,num[NM],den[NM];/* (n_i)/d == (num_i)/(den_i) */
int i,j,n,ord[NM+1], /* order of evaluation (right to left) */
lo[NM+1],lopo, /* loop of length *lo; lopo=#(pointers at loop) */
inv[NM][NM]; /* j is pointed at by inv[j][1],...,inv[j][*inv[j] */
for(i=0;i<s.N;i++) {*ph[i]=1;for(j=0;j<s.N; ph[i][++j]=0);} /* init. ph*/
for(i=0;i<s.N;i++) *inv[i]=0; /* add pointer at s.p[i]: */
for(i=0;i<s.N;i++) if(s.p[i]!=i) {inv[s.p[i]][++(*inv[s.p[i]])]=i;}
invertible=1; for(i=0;(i<s.N)&&invertible;i++)if(*inv[i]>1) invertible=0;
for(i=0;i<s.N;i++) { /* find j in comp. of i: j==i iff min.loop memb.: */
n=s.N; j=s.p[i]; while((--n)&&(j>i)) j=s.p[j];
if(j==i){ /* check for i == minimal loop member '{{' */
int m=0; *lo=s.N-n; /* comlete connected component */
if(*lo==1) {*lo=0; n=2;ord[m=1]=i;} /* if i fermat -> no loop! */
else {lo[1]=i; n=1; /* initialize lo[] and evaluation of ord: */
for(j=2;j<=*lo;j++) lo[j]=s.p[lo[j-1]];
while(m<*inv[i]) {if(lo[*lo]!=(ord[n]=inv[i][++m])) n++;}
for(j=2;j<=*lo;j++) {m=0; while(m<*inv[lo[j]])
if(lo[j-1]!=(ord[n]=inv[lo[j]][++m])) n++;}}
lopo=n-1; /* now ord[1],...,ord[lopo] are the pointers at loop(i) */
for(m=1;m<n;m++) for(j=0;j<*inv[ord[m]];) ord[n++]=inv[ord[m]][++j];
/* end of: comlete connected component */
/* still with i == minimal loop member: */
/* calculate symmetries: first for vars. on ord[], then for the loop */
for(*ord=--n;n;n--) { /* go backwards thru trees according to "ord" */
int *nt=inv[ord[n]]; /* nt points at the vector of ptrs. at ord[n] */
if(*nt) {prili pli; long tli[NM], lcm=*ph[nt[1]]; tli[1]=1;
for(j=2;j<=*nt;j++){tli[j]=1;lcm*=*ph[nt[j]]/pgcd(lcm,*ph[nt[j]]);}
pli=prideco(lcm);
for(j=1;j<=*pli.p;j++) {int po=pli.p[j]; m=0;
while(++m<pli.m[j]) po*=pli.p[j];
for(m=1;mod(*ph[nt[m]],po);m++); tli[m]*=po;} /* choose t_m */
*ph[ord[n]]=s.a[ord[n]]*lcm; /* assign order to new generator */
ph[ord[n]][ord[n]+1]=lcm;
for(m=1;m<=*nt;m++){long fac=lcm/(*ph[nt[m]]);for(j=n+1;j<=*ord;j++)
ph[ord[n]][ord[j]+1]-=fac*ph[nt[m]][ord[j]+1];}
for(m=1;m<=(*nt);m++) *ph[nt[m]]/=tli[m];/* divide orders by t_m */
}
else {*ph[ord[n]]=s.a[ord[n]]; ph[ord[n]][ord[n]+1]=1;}}
/* now (if *lo>0) calculate symmetry for the loop of the component of i: */
/* remember that ord[1],...,ord[lopo] point at the loop */
if(*lo>1) {prili pli; long P=s.a[lo[*lo]],b[NM+1], tli[NM], lcm;
b[1]=1; for(j=1;j<*lo;++j) b[j+1]=-b[j]*s.a[lo[j]];
P *= b[j]; if((++P)<0) P=-P; den[i]=P; /* P = prod(exp(j)) +/- 1 */
lcm=1; /* nt[*nt] -> ord[lopo] */
for(j=0;(j++)<lopo;tli[j]=1) lcm*=*ph[ord[j]]/pgcd(lcm,*ph[ord[j]]);
pli=prideco(lcm);
for(j=1;j <= *pli.p;j++) {int po=pli.p[j]; m=0;
while(++m<pli.m[j]) po*=pli.p[j];
for(m=1;mod(*ph[ord[m]],po);m++); tli[m]*=po;} /* choose t_m */
*ph[i]=P*lcm; /* assign order to new generator */
for(n=1;n<=*lo;n++) ph[i][lo[n]+1]=b[n]*lcm;
for(n=1;n<=lopo;n++) {long fac=1; while(lo[fac]!=s.p[ord[n]]) {fac++;
/* if(fac>NM) {printf("infinit loop(1): fac=%d ",fac);return;} ... debug */}
fac=b[fac]; while(pgcd(abs(fac),*ph[ord[n]])>1) {fac-=P;
/* if(abs(fac/P)>NM) {printf("infinit loop(2): fac=%d ",fac);return;} debug*/}
fac*=lcm/(*ph[ord[n]]);
for(j=1;j<=*ord;j++) ph[i][ord[j]+1]-=fac*ph[ord[n]][ord[j]+1];}
for(j=1;j<=lopo;j++) *ph[ord[j]]/=tli[j]; /* divide orders by t_j */
} maxpri(prideco(*ph[i]));
if(*lo<2) {num[i]=1;den[i]=s.a[i];} /* calculate weights num[j]/den[j] */
else {num[i]=1-s.a[lo[2]]; for(j=2;j<*lo;num[i]=1-s.a[lo[++j]]*num[i]);
d=pgcd(den[i],num[i]=abs(num[i])); num[i]/=d; den[i]/=d;}
for(j=1;j<*lo;j++) {den[n=lo[j+1]]=den[lo[j]]; d=pgcd(den[n],
num[n]=den[n]-s.a[lo[j]]*num[lo[j]]); num[n]/=d;den[n]/=d;}
for(j=1+(*lo==0);j<=*ord;j++){den[ord[j]]=s.a[ord[j]]*den[n=s.p[ord[j]]];
d=pgcd(den[ord[j]],num[ord[j]]=den[n]-num[n]);
num[ord[j]]/=d;den[ord[j]]/=d;} /* end of calculation of weights */
}} /* '}}' */
d=*den; for(j=1;j<s.N;j++) d*=den[j]/pgcd(d,den[j]);/* calculate d and */
D=0; for(j=0;j<s.N;j++) D+=(num[j]=num[j]*(d/den[j])); /* n_j==num[j] */
if((D*=2)% d)fprintf(outfi,"D not int!\n"); D=s.N-D/d; /* D=sum(1-2q_i)*/
for(j=0;j<s.N;j++)if( (num[j]*(s.a[j]-(s.p[j]==j))) != (d-num[s.p[j]]) )
{printf("Error in calculation of weights!\n"); /* check weights */
fprintf(outfi,"Error in calculation of weights!: ");bugcount++;}
/* throw away order 1; write result to outfi (generators, skeleton, #gen.)*/
{int k,l; long G=1; n=0;
if(LONGOUT){fprintf(outfi,"N=%d ", s.N); fprintf(outfi,"d=%ld, n_i=",d);}
/* else {fprintf(outfi,"%d ", s.N); fprintf(outfi,"%ld",d);} */
wei[s.N][0]=d;
for(j=0;j<s.N;j++){if(LONGOUT)fprintf(outfi," %ld",num[j]);
wei[j][0]=num[j]; }
for(j=0;j<s.N;j++) if((*ph[j])>1) {
n++;
if(LONGOUT)fprintf(outfi,"\n%d->Z[%ld]: ",j,*ph[j]);
wei[s.N][n]=ph[j][0];
for(k=1;k<=s.N;k++){
wei[k-1][n]=ph[j][k];
if(LONGOUT)fprintf(outfi," %ld",ph[j][k]);}
G*=*ph[j];}
ns=n;
if(LONGOUT) {fprintf(outfi,"\nskeleton ="); fprintf(outfi," ");}
if(invertible || !ONLYINV) {
for(l=0;l<s.N;l++) fprintf(outfi,"%d",s.p[l]);
for(l=0;l<s.N;l++) fprintf(outfi," %d", s.a[l]);
fprintf(outfi," inv=%d ", invertible); }
if(LONGOUT)fprintf(outfi," #generators=%d, Order=%ld\n",n,G); }
}
/************ End of maxsym *********/
/****************************************************************************/
/* prime decomposition and reduction to allowed determinants */
/****************************************************************************/
void primedecomp()
/* decomposition of wei, d, det into their components corresponding to
the primenumbers pr[j], namely prwei[j], prd[j], prdet[j] */
{ sint i, j=0, k, l, p;
lint dk;
for (i=0;(i<NPN)&&(lcmd!=1);i++){
if (!mod(lcmd,p=prime[i])) {
pr[j]=p;
for (k=0;k<=ns;k++){
prd[k][j]=1; dk=d[k];
while (!mod(dk,p)){dk/=p; prd[k][j]*=p;};
for (l=0;l<n;l++) prwei[l][k][j]=mod(wei[l][k],prd[k][j]);
prdet[k][j]=rR(mod(det[k],prd[k][j]),prd[k][j]); };
while (!mod(lcmd,p)) lcmd/=p;
j++; } }
npr=j;
if (lcmd!=1) {fprintf(outfi,"caution: Big prime number!!!"); bugcount++;}
}
void gooddets()
/* recombines the generators in such a way that they have det=1 (det^d=1 for
torsion), orders them (decreasing orders), counts them */
{ sint i,j,k,l,ig,is,imax,maxdetden,w;
/* maxdetden is the maximal denominator of the determinants */
lint auxlong;
for (j=0;j<=npr;j++){
maxdetden=1;
for (i=1;i<=ns;i++) maxdetden=max(maxdetden, prdet[i][j].den);
while (maxdetden>1 /* prd[0][j] for torsion */){
imax=0;
for (i=1;i<=ns;i++) if (prdet[i][j].den==maxdetden){
if (!imax) imax=i;
else {
if (prd[i][j]>prd[imax][j]) {ig=i; is=imax;}
else {ig=imax; is=i;};
k=0;
while (mod(prdet[ig][j].num+k*prdet[is][j].num,maxdetden))
k++;
for (l=0;l<n;l++){
auxlong=k;
auxlong*=prwei[l][is][j];
auxlong*=prd[ig][j];
auxlong/=prd[is][j];
auxlong+=prwei[l][ig][j];
prwei[l][ig][j]=mod(auxlong,prd[ig][j]);}
prdet[ig][j]=rI(0);
imax=is; } }
prd[imax][j]/=pr[j];
for (l=0;l<n;l++)
prwei[l][imax][j]=mod(prwei[l][imax][j], prd[imax][j]);
prdet[imax][j]=rP(prdet[imax][j],rI(pr[j]));
maxdetden/=pr[j]; }
/* ordering of the generators: */
for (i=1;i<ns;i++){
imax=i;
for (k=i+1;k<=ns;k++) if (prd[k][j]>prd[imax][j]) imax=k;
if (imax>i) {
for (k=0;k<n;k++){
w=prwei[k][imax][j];
prwei[k][imax][j]=prwei[k][i][j];
prwei[k][i][j]=w; }
w=prd[imax][j];
prd[imax][j]=prd[i][j];
prd[i][j]=w;
w=prdet[imax][j].den;
prdet[imax][j].den=prdet[i][j].den;
prdet[i][j].den=w;
w=prdet[imax][j].num;
prdet[imax][j].num=prdet[i][j].num;
prdet[i][j].num=w; } }
/* calculation of number prns[j] of non-trivial generators */
i=1;
while ((prd[i][j]>1)&&(i<ns+1)) i++;
prns[j]=i-1; }
}
/***** End of primedecomp&gooddets ******************************************/
/****************************************************************************/
/* Routines for checking the link criterion */
/****************************************************************************/
typedef int smon[1];
pointlist pointernum;
int linklist[NM][MAXPN], targlist[NM][MAXPN], monlist[NM][MAXPN];
/* #pointers at X_i = pointernum[i-1] */
/* linklist[i-1] contains list of all links pointing at X_i */
/* targlist[i][j] indicates subtargets of linklist[i][j] */
/* monlist[i][j] is the actual monomial realising linklist[i][j] */
sint symcheck(symlist sum, int link, smon mon){
/* symcheck checks whether there is a monomial mon in
* the variables indicated by link whose total weight is sum[0] and which
* transforms under the k'th symmetry with a phase sum[k];
* if X_i occurs in the monomial then mon[i] is set to 1. */
sint i, j, k, check, expo;
int newlink;
symlist newsum;
for (i=0;i<n;i++) if (link&mask[i]){
if (!mod(sum[0], wei[i][0])){
expo=sum[0]/wei[i][0];
check=1;
for (j=1;(j<=ns)&✓j++)
if (mod(expo*wei[i][j]-sum[j],d[j])) check=0;
if (check) {mon[0]=mon[0]|mask[i]; return 1;}; };
newlink=link-mask[i];
for (j=0;j*wei[i][0]<sum[0];j++){
for (k=0;k<=ns;k++) newsum[k]=sum[k]-j*wei[i][k];
if (symcheck(newsum,newlink,mon)) {
if (j) mon[0]=mon[0]|mask[i];
return 1; }; }; };
return 0;
}
sint checklink(int link, int targets){
/* checklink checks recursively whether a specific link with subtargets
* indicated by targets exists and can be added to the graph.
* If a pointer is required, the existence of all further links required
* by our theorem is checked by recursive calls of checklink. */
sint i, j, k, pn, check;
int newtarg, newlink;
smon mon;
symlist dw;
if (symcheck(d,link,mon)) return 0;
for (i=0;i<n;i++) if(!((targets|link)&mask[i])){
mon[0]=0;
for (j=0;j<=ns;j++) dw[j]=d[j]-wei[i][j];
if (symcheck(dw,link,mon)){
for (j=0;j<pointernum[i];j++){
newlink=(link|linklist[i][j]);
newtarg=(targets|targlist[i][j]);
if (mon[0]!=monlist[i][j])
if (checklink(newlink, newtarg)) return 1; };
pn=pointernum[i]++;
if (pn>=MAXPN) {
printf("pointernum too large\n");
return 1;}
monlist[i][pn]=mon[0];
linklist[i][pn]=link;
targlist[i][pn]=targets|mask[i];
return 0; }; };
return 1;
}
sint checkweight(){ /* checks whether our weight system allows a
non-degenerate symmetry-respecting potential */
sint i, j;
for (i=0;i<n;i++) pointernum[i]=0;
for (i=0;i<n;i++) if (checklink(mask[i], 0)) return 1;
return 0;
}
/****************** End of linkcheck part ***********************************/
/****************************************************************************/
/* Calculation of Hodge numbers */
/****************************************************************************/
void addhod(spectrum hodge);
void proced()
{ int i, j, k, fac, wort, chi, nvar, expo;
spectrum spec;
lint zsum1=0, zsum2=0, mo=1, ng, ngb, kgV=1;
rat prod;
symlist omega, ele; /* omega_i = kgV/O_i, ele encodes group element */
worte wo; /* wo[word][0(2)] = contribution of word to ng(ngb) */
/* wo[word][1] = number of group elements whose sets
of survivors are indicated by word */
for (i=0;i<=WM;i++) for (k=0;k<=2;k++) wo[i][k] = 0;
for (k=1;k<=ns;k++) kgV = lcm(kgV,wei[n][k]);
for (k=1;k<=ns;k++) { omega[k] = kgV/wei[n][k]; mo*=wei[n][k]; }
ele[j=ns]=0;
while(j<=ns){
if(ele[j]==wei[n][j])ele[++j]++;
else if(j-1) ele[--j]=0;
else {
nvar=0;
for (i=0;i<n;i++) {
expo=0;
for (k=1;k<=ns;k++) expo+=ele[k]*omega[k]*wei[i][k];
if (!mod(expo,kgV)) nvar+=mask[i]; }
wo[nvar][1]++;
ele[1]++;}}
for (i=0;i<mask[n];i++) {
fac = 1;
for (j=0;j<n;j++) if ((mask[j] & i) == mask[j]) fac*=-1;
if (wo[i][1]) for (k=0;k<mask[n];k++) if (wo[k][1]) {
wort = i & k;
wo[wort][fac+1]+=wo[i][1]*wo[k][1]; } }
for (i=mask[n]-1;i>=0;i--) if (wo[i][0]+wo[i][2]) {
prod=rI(1);
for (j=0;j<n;j++) if ((mask[j]&i)==mask[j])
prod = rP(prod,rR(wei[j][0]-wei[n][0],wei[j][0]));
if (prod.den != 1){
fprintf(outfi,"\ncaution: prod.den != 1\n");bugcount++;}
zsum1+= wo[i][0]*prod.num; zsum2+= wo[i][2]*prod.num; }
spec[2]=interb01(); /* b01 change */
/* over = wo[mask[n]-1][1]; */
spec[2]/=over; /* bisher b01 nicht durch over dividiert; rueckrechnen:*/
/* n n 0 2 -> n+2 n+2 0 1 und n n 0 6 -> n+6 n+6 0 3. */
if ((spec[2]!=0)&&(spec[2]!=1)&&(spec[2]!=3)&&(D==3)) {
fprintf(outfi,"caution: b01=%d\n", spec[2]); bugcount++;}
ng = -(zsum1/mo/over+2)/2; ngb = (zsum2/mo/over-2)/2;
if (zsum1 != -2*(ng+1)*mo*over)
{fprintf(outfi,"ng is not integer!\n");bugcount++;}
if (zsum2 != 2*(ngb+1)*mo*over)
{fprintf(outfi,"ngb is not integer!\n");bugcount++;}
chi = 2*(ngb-ng);
if(LONGOUT) fprintf(outfi,"ngb: %ld ng: %ld chi: %d\n",ngb,ng,chi);
spec[0]=ngb; spec[1]=chi;
addhod(spec);
}
/************* End of calculation of Hodge numbers **********/
/****************************************************************************/
/* Construction of all symmetries */
/****************************************************************************/
sint forbidden(sint i, sint j, sint sprns)
{ sint l;
for (l=0;l<sprns;l++) if (i==norm[l][j]) return (l+1);
return 0;
}
void reccon(sint j, sint sprns);
void processym()
{ sint i, j;
ns=auxns[npr-1];
if(LONGOUT){
fprintf(outfi,"\nwei:\n");
for(j=0;j<n;j++) fprintf(outfi," %d", wei[j][0]);
fprintf(outfi," %d\n", d[0]); }
for (i=1;i<=ns;i++){
d[i]=auxd[i-1][npr-1];
wei[n][i]=d[i];
/* if torsion also dets */
for (j=0;j<n;j++){
wei[j][i]=auxwei[j][i-1][npr-1];
if(LONGOUT)fprintf(outfi," %d",wei[j][i]); }
if(LONGOUT)fprintf(outfi," %d\n",d[i]); }
if (checkweight()){if(LONGOUT)fprintf(outfi,"degenerate!!\n"); }
else{if(LONGOUT)fprintf(outfi,"Hodge numbers: "); proced(); symnum++;};
}
sint rectest(sint j, sint k, pointlist auxel)
/* the recursive part of zdtest; checks whether auxel and the generators of
nprwei with index <= k can combine to the generator of the Z_d */
{ sint i, m;
lint auxlong;
pointlist newauxel;
if (k<0) {
for (i=0;i<n;i++)
if (mod(auxel[i]-prwei[i][0][j],prd[0][j])) return 0;
return 1;}
for (m=0;m<prd[0][j];m+=max(1,prd[0][j]/sprd[k][j])){
for (i=0;i<n;i++){
auxlong=m; auxlong*=nprwei[i][k][j]; auxlong+=auxel[i];
newauxel[i]=mod(auxlong,prd[0][j]);}
if (rectest(j,k-1,newauxel)) return 1; }
return 0;
}
sint zdtest(sint j, sint sprns)
/* checks whether the group generated by nprwei contains the generator of
the Z_d by calling rectest */
{ sint i;
pointlist auxel;
if (prd[0][j]<=1) return 1;
for (i=0; i<n; i++) auxel[i]=0;
return rectest(j, sprns-1, auxel);
}
void fillup(sint j, sint sprns, sint k, sint l)
/* j: 0..npr-1, sprns: 0..prns[j], k: 0..sprns-1, l: 1..prns[j] */
/* given norm and ord, fillup recursively constructs all possibilities for
sprwei, calculates nprwei and auxwei from sprwei and calls (depending on
j) reccon(j+1,0) or hodge;
sprwei encodes the pr[j]-components of the symmetry in terms of the
generators of prwei, nprwei is the explicit form, auxwei is the product of
the nprwei's for the prime factors up to pr[j];
the new symmetry is given by auxwei[npr-1] */
{ sint imax, m, i;
lint auxlong;
if (j>=npr) processym();
else if (k>=sprns){ if (zdtest(j,sprns)){
/* if nprwei contains projection of Z_d calculate auxwei: */
if (j==0) {imax=0; auxns[0]=sprns;}
else {imax=min(auxns[j-1],sprns); auxns[j]=max(auxns[j-1],sprns);}
for (i=0;i<imax;i++){
for (m=0;m<n;m++)
auxwei[m][i][j]=sprd[i][j]*auxwei[m][i][j-1]+
auxd[i][j-1]*nprwei[m][i][j];
auxd[i][j]=auxd[i][j-1]*sprd[i][j];
/* if Torsion also auxdet */ }
for (i=imax;i<sprns;i++){
for (m=0;m<n;m++)
auxwei[m][i][j]=nprwei[m][i][j];
auxd[i][j]=sprd[i][j];
/* if Torsion also auxdet */ }
if (j>0) for (i=imax;i<auxns[j-1];i++){
for (m=0;m<n;m++)
auxwei[m][i][j]=auxwei[m][i][j-1];
auxd[i][j]=auxd[i][j-1];
/* if Torsion also auxdet */ }
if(LONGOUT){
fprintf(outfi,"\nsprwei[%d]:\n",j);
for (i=0;i<sprns;i++){
for (m=1;m<=prns[j];m++) fprintf(outfi," %d",sprwei[m][i][j]);
fprintf(outfi," %d\n", sprd[i][j]); }
fprintf(outfi,"nprwei[%d]:\n",j);
for (i=0;i<sprns;i++){
for (m=0;m<n;m++) fprintf(outfi," %d",nprwei[m][i][j]);
fprintf(outfi," %d\n", sprd[i][j]); }
fprintf(outfi,"auxwei[%d]:\n",j);
for (i=0;i<auxns[j];i++){
for (m=0;m<n;m++) fprintf(outfi," %d",auxwei[m][i][j]);
fprintf(outfi," %d\n", auxd[i][j]); } }
reccon(j+1, 0); } }
else if (l>prns[j]){
/* calculate nprwei[.][k][j] from sprwei[l][k][j] */
for (m=0;m<n;m++){
nprwei[m][k][j]=0;
for (i=1;i<=prns[j];i++){
auxlong=prwei[m][i][j];
auxlong*=sprwei[i][k][j];
auxlong*=sprd[k][j];
auxlong/=prd[i][j];
nprwei[m][k][j]+=mod(auxlong,sprd[k][j]);}
nprwei[m][k][j]=mod(nprwei[m][k][j],sprd[k][j]);
/* if Torsion also nprdet */ }
fillup(j, sprns, k+1, 1); }
else{
/* for all possible values of sprwei[l][k][j] call
fillup(j, sprns, k, l+1) */
m=forbidden(l, j, sprns);
if (!m) {
sprwei[l][k][j]=0;
if (l<norm[k][j]) while (sprwei[l][k][j]<prd[l][j]){
fillup(j, sprns, k, l+1);
sprwei[l][k][j]+=max(1,pr[j]*prd[l][j]/sprd[k][j]); }
if (l>norm[k][j]) while (sprwei[l][k][j]<prd[l][j]){
fillup(j, sprns, k, l+1);
sprwei[l][k][j]+=max(1,prd[l][j]/sprd[k][j]); } }
m--;
if (m==k){
sprwei[l][k][j]=prd[l][j]/sprd[k][j];
fillup(j, sprns, k, l+1); }
else if (m>=0) {
sprwei[l][k][j]=0;
if (l<norm[k][j]) while (sprwei[l][k][j]<prd[l][j]/sprd[m][j]){
fillup(j, sprns, k, l+1);
sprwei[l][k][j]+=max(1,pr[j]*prd[l][j]/sprd[k][j]); }
if (l>norm[k][j]) while (sprwei[l][k][j]<prd[l][j]/sprd[m][j]){
fillup(j, sprns, k, l+1);
sprwei[l][k][j]+=max(1,prd[l][j]/sprd[k][j]); } } } ;
}
void reccon(sint j, sint sprns)
/* reccon is the starting point for the recursive construction of all
subgroups of the maximal symmetry group;
reccon assigns orders sprd[i][j] to the i'th generators of the new group
(in the sector corresponding to the prime number pr[j]) and indicates by
norm[i][j] which generator of prwei is normalized in the i'th generator;
reccon calls fillup to assign values to the other components */
{ sint i;
fillup(j,sprns,0,1);
if (j<npr) for (i=1;i<=prns[j];i++)
if (!forbidden(i,j,sprns)) {
norm[sprns][j]=i;
if (sprns==0) sprd[sprns][j]=prd[i][j];
else if (i>norm[sprns-1][j])
sprd[sprns][j]=min(prd[i][j],sprd[sprns-1][j]);
else sprd[sprns][j]=min(prd[i][j],sprd[sprns-1][j]/pr[j]);
while (sprd[sprns][j]>1) {
reccon(j,sprns+1);
sprd[sprns][j]/=pr[j]; }; }
}
/****** End of construction of symmetries *********************************/
/****************************************************************************/
/* Input/output/statistics part */
/****************************************************************************/
void datain() /* asks for input, reads input, calculates det */
{ int i, k, evenn=mod(n-D,2), addtriv=2*((addsyms+1)/2)+evenn;
norig=n; /* n-1 -> n-D with D=sum(1-2q_i) */
d[0]=wei[n][0];
oddd=mod(d[0],2);
lcmd=d[0];
det[0]=0;
for (k=1;k<=ns;k++){
det[k]=0;
for (i=0;i<=n;i++) det[k]+=wei[i][k];
d[k]=wei[n][k];
det[k]=mod(det[k], d[k]);
lcmd=lcm(lcmd,d[k]); }
if (addtriv){ /* add correct trivial factor + triv. symm. */
if(oddd){
for (i=0;i<=n;i++) wei[i][0]*=2;
d[0]=wei[n][0]; }
wei[n+addtriv][0] = d[0];
for (i=0;i<addtriv;i++) wei[n+i][0] = d[0]/2;
for (k=1;k<=ns;k++){
wei[n+addtriv][k] = wei[n][k];
for (i=0;i<addtriv;i++) wei[n+i][k] = 0; }
n+=addtriv;
for (i=1;i<=addsyms+evenn;i++){
for (k=0;k<n;k++) wei[k][ns+i]=0;
wei[norig+i-1][ns+i]=1;
wei[norig+i-1][ns+1]=1;
wei[n][ns+i]=2;
d[ns+i]=2;
det[ns+i]=1;}
for (k=norig;k<n;k++) wei[k][ns+1]=1;
det[ns+1]=evenn;
ns+=addsyms+evenn; }
specnum=0;
symnum=0;
}
void longoutput0()
{ sint j, k;
fprintf(outfi,"\nwei:\n");
for (j=0;j<=ns;j++){
for (k=0;k<n;k++) fprintf(outfi," %ld",wei[k][j]);
fprintf(outfi," %ld\n", d[j]);}
}
void longoutput1()
{ sint i, j, k;
fprintf(outfi,"\nDecomposition into prime numbers:\n");
for (i=0;i<npr;i++){
fprintf(outfi,"p=%d:\n",pr[i]);
for (j=0;j<=ns;j++){
for (k=0;k<n;k++) fprintf(outfi," %d",prwei[k][j][i]);
fprintf(outfi," %d", prd[j][i]);
fprintf(outfi," det: %ld/%ld\n",prdet[j][i].num,prdet[j][i].den);
} } }
void longoutput2()
{ sint i, j, k;
fprintf(outfi,"\nSubgroup with det=1, ordered:\n");
for (i=0;i<npr;i++){
fprintf(outfi,"p=%d:\n",pr[i]);
for (j=0;j<=prns[i];j++){
for (k=0;k<n;k++) fprintf(outfi," %d",prwei[k][j][i]);
fprintf(outfi," %d", prd[j][i]);
fprintf(outfi," det: %ld/%ld\n",prdet[j][i].num,prdet[j][i].den);
}; } }
sint hodcomp(spectrum hodge1, spectrum hodge2){
if (hodge1[2]<hodge2[2]) return -1; /* b01 change */
if (hodge1[2]>hodge2[2]) return 1;
if (hodge1[1]<hodge2[1]) return -1;
if (hodge1[1]>hodge2[1]) return 1;
if (hodge1[0]<hodge2[0]) return -1;
if (hodge1[0]>hodge2[0]) return 1;
return 0;
}
spectrum search={0,0,0};
void searchspec(spectrum);
void addhod(spectrum hodge){
sint i, j, k;
searchspec(hodge);
for(j=0; ((hodcomp(hodge, hodlist[j])>0)&&(j<specnum)); ++j);
if ((j==specnum)||hodcomp(hodge, hodlist[j])){
for(k=specnum;k>j;k--)
for (i=0;i<3;i++) hodlist[k][i]=hodlist[k-1][i];
for (i=0;i<3;i++) hodlist[j][i]=hodge[i];
specnum++; }
}
void finishmodel()
{ sint j;
if(LONGOUT)fprintf(outfi,"\nspecnum, symnum: ");
fprintf(outfi,"sp=%ld sy=%ld\n", specnum, symnum);
for (j=0;j<specnum;j++)
{int B01=hodlist[j][2], NGB=hodlist[j][0]-2*B01,CHI=hodlist[j][1];
if(B01) fprintf(outfi,"-%d %d %d %d\n",NGB-CHI/2,NGB,CHI,B01);
else fprintf(outfi,"%d %d %d\n",NGB-CHI/2,NGB,CHI);}
/*fprintf(outfi,"%d %d\n",hodlist[j][0],hodlist[j][1]);*//* b01 change */
totsymnum+=symnum;
totspecnum+=specnum;
maxspecnum=max(maxspecnum,specnum);
maxsymnum=max(maxsymnum,symnum);
modelnum++;
if (!specnum) bugcount++;
}
void ErrEx(char *c){puts(c);exit(0);}
void ReadEOL(){char c;
while('\n'!=(c=fgetc(infi)))if(c==EOF){puts("End of File");exit(0);}}
void ReadSpec(){int g,a,c,b=0; /* g=h[0]-(h[1]=chi)/2; a=h[0]; b=h[3]; */
if(stdi)printf("Type 'g a c' or '-g a c h01' with g=h12 and a=h11: ");
fscanf(infi,"%d%d%d",&g,&a,&c); if(g<0){ fscanf(infi,"%d",&b); g=-g;}
if(c!=2*(a-g))ErrEx("inconsistent a g c [need c=2(a-g)]");
if(b&&c)ErrEx("inconsistent: b>0 => c=0"); /* search={a,c=2(a-g),b} */
ReadEOL(); search[0]=a; search[1]=c; search[2]=b;}
void PrintUse(char *s){puts(s);
puts("Either '-s' or '-g # -a #' is required, the rest is optional");
puts(" -s ask for spectrum");
puts(" -g h12 #generations"); puts(" -a h11 #anti-generations");
puts(" -b h01 #(01)-forms"); puts(" -t # # of trivial pairs [1]");
puts(" -i InFile "); puts(" -o OutFile"); exit(0);}
void LgoTwistInit(int narg, char* fn[]){ int n=1,t=0, /* t-> # trivial pairs */
g=0,a=0,b=0; char *c; infi=stdin; stdi=1; outfi=stdout;
if(narg<2)PrintUse(""); while(n<narg) if(fn[n][0]!='-') PrintUse(""); else
switch(fn[n][1]){
case 's': ReadSpec(); n++; break;
case 't': c=(fn[n][2]) ? &fn[n][2] : fn[++n]; t=atoi(c); n++; break;
case 'g': c=(fn[n][2]) ? &fn[n][2] : fn[++n]; if((*c)=='-')PrintUse("");
g=atoi(c); n++; break;
case 'a': c=(fn[n][2]) ? &fn[n][2] : fn[++n];
a=atoi(c); n++; break;
case 'b': c=(fn[n][2]) ? &fn[n][2] : fn[++n];
b=atoi(c); n++; break;
case 'i': c=(fn[n][2]) ? &fn[n][2] : fn[++n]; infi=fopen(c,"r");
if(infi==NULL) PrintUse("Open infile failed"); n++; stdi=0; break;
case 'o': c=(fn[n][2]) ? &fn[n][2] : fn[++n]; outfi=fopen(c,"w");
if(outfi==NULL) PrintUse("Open outfile failed"); n++; break;
default: PrintUse("Wrong option");}
if(g+a) {search[0]=a; search[1]=2*(a-g); search[2]=b;}
else {a=search[0]; g=search[0]-search[1]/2; b=search[2]; } addsyms=2*t;
printf("searching for '%d %d %d", b ? -g : g,a,2*(a-g));
if(b)printf(" %d",b);
printf("' with %d trivial pair(s); stop skeleton input with EOF\n",t);
}
int main(int narg, char* fn[])
{ skelet s;
LgoTwistInit(narg,fn);
/* if (narg>1) infi=fopen(fn[1],"r"); aao2.6 002244 4 3 4 3 4 3
else {
infi=stdin; stdi=1;
printf("usage: arg1=input file [stdin]; arg2=output file [stdout];\n");
printf(" arg3=#pairs of trivial fields to be added;\n");
printf("skeleton = string[#] exp_1 ... exp_#\n");}
if (narg>2) outfi=fopen(fn[2],"w"); else outfi=stdout;
if (narg>3) addsyms= *fn[3]-'0'; else addsyms=0;
if (narg>4) search[1]=atoi(fn[4]); if (narg>5) search[0]=atoi(fn[5]);
if (narg>6) search[2]=atoi(fn[6]); search[1]=2*(search[0]-search[1]);
*/ while(readline(&s)&&!bugcount){ /* search={a,c=2(a-g),b} */
analy(s); if(invertible || !ONLYINV) {
datain();
if(LONGOUT)longoutput0();
primedecomp();
if(LONGOUT)longoutput1();
gooddets();
if(LONGOUT)longoutput2();
reccon(0,0);
finishmodel();} }
/* fprintf(outfi,"modelnum, totsymnum, maxsymnum, totspecnum, maxspecnum: ");
fprintf(outfi,"%ld %ld %ld %ld %ld", modelnum, totsymnum, maxsymnum,
totspecnum, maxspecnum); */
fprintf(outfi,
"#skel=%ld, #sym=%ld, sym/skel<=%ld, #spectra=%ld, spec/skel<=%ld",
modelnum, totsymnum, maxsymnum, totspecnum, maxspecnum);
printpri(pmax);
}
/* ========================= b01 ========================= */
int interb01(/*struct ein */); /* ... interface to "mhodge" conventions */
/* calculate b01 for NG generators: Z_{*gen[j]}: (gen[j][1],...,gen[j][N]) *
* 0<=j<NG on N fields X_i. zd[i]/(*zd) is the weight of X_i,0<i<=N. *
* !!! note that gen is changed (in version without rat) !!! */
/* how to avoid the recursion: pow[j] determines the current group element,*
* i.e. we need all possible vectors with 0<=pow[j]<O_j for 0<=j<J: *
* logic: if pow_j==O_j ==> "exit" (i.e. pow[j++]++); else *
* if j==0 ==> "do it"; else "call" (i.e. {pow[--j]=0; initializations;}) *
* code: pow[j=NG-1]=0;while(j<NG){if(pow[j]==O_j)pow[++j]++; else *
* if(j)pow[--j]=0; else {"do it for pow[]!"; *pow++;}} *
* where O_j=*gen[j], J=NG; !!! note that pow[J+1] is set to 0 !!! */
#if SAFER
void mod1(rat *a) {a->num=mod(a->num,a->den);}
int b01(sint N, sint NG, sint zd[NM+1], lint gen[NS][NM+1])
{ int b=0, i,j, eq[NM+1],pow[NS+1]; /* eq=th_i==q_i; pow(er) of generator */
over=0;
pow[j=NG-1]=0; while(j<NG) { /* -- begin generate group -- */
if(pow[j]==*gen[j]) pow[++j]++; else if(j) pow[--j]=0; else { /* do it: */
int can=1, sum=0, k; /* can(didate) for b01-contribution */
for(i=1;can&&(i<=N);i++) {rat th=rI(0); /* check th=0/q -> set eq */
for(k=0;k<NG;k++){th=rS(th,rR(pow[k]*gen[k][i],*gen[k]));mod1(&th);}
if(th.num) {if(th.num<0) th.num+=th.den;
th=rP(th,rR(*zd,zd[i])); if(th.num-th.den) can=0;
else {eq[i]=1;sum+=*zd-2*zd[i];} } else eq[i]=0; }
if(sum&&(sum!= *zd)) can=0; /* i.e. charge=1? */
for(k=0;can&&(k<NG);k++){lint gph=0;/*check inv. under G_k: gph(ase)*/
for(i=1;i<=N;i++) {if(eq[i]) gph+=gen[k][i];gph=mod(gph,*gen[k]);}
if(gph) can=0; }
if(can) {if(sum) b++; else over++;}
(*pow)++;}} /* end of generate group */
return b;
}
#else
int b01(sint N, sint NG, sint zd[NM+1], lint gen[NS][NM+1])
{ int b=0, i,j, eq[NM+1],pow[NS+1]; /* eq=th_i==q_i; pow(er) of generator */
lint G=**gen; for(j=1;j<NG;j++) G*=(*gen[j]/gcd(G,*gen[j]));/* lcm(O_j) */
{lint inv; for(j=0;j<NG;j++) {inv=G/(*gen[j]); /* inv=G/O_j */
for(i=1;i<=N;i++) gen[j][i]*=inv;}} /* bring phases to common den.*/
pow[j=NG-1]=0; while(j<NG) { /* begin generate group (+ next line) */
if(pow[j]==*gen[j]) pow[++j]++; else if(j) pow[--j]=0; else { /* do it: */
int can=1, sum=-(*zd), k; /* can(didate) for b01-contribution */
for(i=1;can&&(i<=N);i++) /* check th=0/q -> set eq */
{lint th=0; for(k=0;k<NG;k++) th+=pow[k]*gen[k][i]; th=mod(th,G);
if(th<0){printf("warning: th<0!\n"); th+=G;}
if(th) if(th-zd[i]*(G/ *zd)) can=0; /* no candidate */
else {eq[i]=1;sum+=*zd-2*zd[i];} else eq[i]=0; }
if(sum) can=0; /* i.e. charge=1? */
for(k=0;can&&(k<NG);k++){lint gph=0;/*check inv. under G_k: gph(ase)*/
for(i=1;i<=N;i++) {if(eq[i]) gph+=gen[k][i];gph=mod(gph,G);}
if(gph) can=0; }
if(can) b++;
(*pow)++;}} /* end of generate group */
return b;
}
#endif
int interb01() /* aao.c: *e.np -> ns; *e.n -> n; *e.w -> wei; PM->NS */
{ sint i,j,zd[NM+1]; lint gen[NS][NM+1]; zd[0]=wei[n][0];
for(i=1-ADDZD;i<=ns;i++) gen[i][0]=wei[n][i];
for(i=1;i<n+1;i++) {zd[i]=wei[i-1][0];
for(j=1-ADDZD;j<=ns;j++) gen[j][i]=wei[i-1][j]; }
return b01(n, ns+ADDZD, zd, &(gen[1-ADDZD]));
}
/* ========================= end of b01 ========================= */
/* ======================== search for g,a,b ========================= */
#define fpri(list,num) fprintf(outfi,list,(long) num)
void searchspec(spectrum h) /* g=h[0]-(h[1]=chi)/2; a=h[0]; b=h[3]; */
{ /* printf("h=%d %d %d search=%d %d %d\n",h[0],h[1],h[2],
search[0],search[1],search[2]);*/
if(h[0]!=search[0]+2*search[2]) return; /* h[0]=trace=s[0]+2*s[2] !!! */
if(h[1]!=search[1]) return;
if(h[2]!=search[2]) return;
#ifdef OLD_FORMAT
{int i,j; fprintf(outfi,"\n"); fpri("C_{(%ld",wei[0][0]);
for(i=1;i<n;i++) fpri(",%ld",wei[i][0]); fpri(")[%ld]\n",wei[n][0]);
for(j=1;j<=ns;j++) {fpri("Z_{%ld}(",wei[n][j]);
for(i=0;i<n-1;i++) fpri("%ld,",wei[i][j]);
fpri("%ld)\n",wei[i][j]); }}
#else
{int i,j; fprintf(outfi,"\n"); fpri("%ld",wei[n][0]);
for(i=0;i<n;i++) fpri(" %ld",wei[i][0]);
if(n%2==0) fpri("%ld",wei[n][0]/2);
for(j=1;j<=ns;j++) {fpri(" /Z%ld:",wei[n][j]);
for(i=0;i<n;i++) fpri(" %ld",wei[i][j]);}}
#endif
/* exit(); */
}
|