File: indexing.py

package info (click to toggle)
pandas 0.13.1-2~bpo70%2B1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy-backports
  • size: 48,044 kB
  • sloc: python: 115,757; ansic: 11,490; sh: 311; makefile: 120
file content (176 lines) | stat: -rw-r--r-- 5,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from vbench.benchmark import Benchmark
from datetime import datetime

SECTION = 'Indexing and scalar value access'

common_setup = """from pandas_vb_common import *
"""

#----------------------------------------------------------------------
# Series.__getitem__, get_value

setup = common_setup + """
tm.N = 1000
ts = tm.makeTimeSeries()
dt = ts.index[500]
"""
statement = "ts[dt]"

bm_getitem = Benchmark(statement, setup, ncalls=100000,
                       name='series_getitem_scalar')

setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
s = Series(np.random.rand(1000), index=index)
idx = index[100]
"""
statement = "s.get_value(idx)"
bm_df_getitem3 = Benchmark(statement, setup,
                           name='series_get_value',
                           start_date=datetime(2011, 11, 12))

#----------------------------------------------------------------------
# DataFrame __getitem__

setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = DataFrame(np.random.rand(1000, 30), index=index,
               columns=columns)
idx = index[100]
col = columns[10]
"""
statement = "df[col][idx]"
bm_df_getitem = Benchmark(statement, setup,
                          name='dataframe_getitem_scalar')

setup = common_setup + """
try:
    klass = DataMatrix
except:
    klass = DataFrame

index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = klass(np.random.rand(1000, 30), index=index,
               columns=columns)
idx = index[100]
col = columns[10]
"""
statement = "df[col][idx]"
bm_df_getitem2 = Benchmark(statement, setup,
                           name='datamatrix_getitem_scalar')


#----------------------------------------------------------------------
# ix get scalar

setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = DataFrame(np.random.randn(1000, 30), index=index,
               columns=columns)
idx = index[100]
col = columns[10]
"""

indexing_frame_get_value_ix = Benchmark("df.ix[idx,col]", setup,
                                        name='indexing_frame_get_value_ix',
                                        start_date=datetime(2011, 11, 12))

indexing_frame_get_value = Benchmark("df.get_value(idx,col)", setup,
                                     name='indexing_frame_get_value',
                                     start_date=datetime(2011, 11, 12))

#----------------------------------------------------------------------
# Boolean DataFrame row selection

setup = common_setup + """
df  = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
indexer = df['B'] > 0
obj_indexer = indexer.astype('O')
"""
indexing_dataframe_boolean_rows = \
    Benchmark("df[indexer]", setup, name='indexing_dataframe_boolean_rows')

indexing_dataframe_boolean_rows_object = \
    Benchmark("df[obj_indexer]", setup,
              name='indexing_dataframe_boolean_rows_object')

setup = common_setup + """
df  = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
"""
indexing_dataframe_boolean = \
    Benchmark("df > df2", setup, name='indexing_dataframe_boolean',
              start_date=datetime(2012, 1, 1))

setup = common_setup + """
import pandas.computation.expressions as expr
df  = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
expr.set_numexpr_threads(1)
"""

indexing_dataframe_boolean_st = \
    Benchmark("df > df2", setup, name='indexing_dataframe_boolean_st',cleanup="expr.set_numexpr_threads()",
              start_date=datetime(2013, 2, 26))


setup = common_setup + """
import pandas.computation.expressions as expr
df  = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
expr.set_use_numexpr(False)
"""

indexing_dataframe_boolean_no_ne = \
    Benchmark("df > df2", setup, name='indexing_dataframe_boolean_no_ne',cleanup="expr.set_use_numexpr(True)",
              start_date=datetime(2013, 2, 26))
#----------------------------------------------------------------------
# MultiIndex sortlevel

setup = common_setup + """
a = np.repeat(np.arange(100), 1000)
b = np.tile(np.arange(1000), 100)
midx = MultiIndex.from_arrays([a, b])
midx = midx.take(np.random.permutation(np.arange(100000)))
"""
sort_level_zero = Benchmark("midx.sortlevel(0)", setup,
                            start_date=datetime(2012, 1, 1))
sort_level_one = Benchmark("midx.sortlevel(1)", setup,
                           start_date=datetime(2012, 1, 1))

#----------------------------------------------------------------------
# Panel subset selection

setup = common_setup + """
p = Panel(np.random.randn(100, 100, 100))
inds = range(0, 100, 10)
"""

indexing_panel_subset = Benchmark('p.ix[inds, inds, inds]', setup,
                                  start_date=datetime(2012, 1, 1))

#----------------------------------------------------------------------
# Iloc

setup = common_setup + """
df = DataFrame({'A' : [0.1] * 3000, 'B' : [1] * 3000})
idx = np.array(range(30)) * 99
df2 = DataFrame({'A' : [0.1] * 1000, 'B' : [1] * 1000})
df2 = concat([df2, 2*df2, 3*df2])
"""

frame_iloc_dups = Benchmark('df2.iloc[idx]', setup,
                            start_date=datetime(2013, 1, 1))

frame_loc_dups = Benchmark('df2.loc[idx]', setup,
                            start_date=datetime(2013, 1, 1))

setup = common_setup + """
df = DataFrame(dict( A = [ 'foo'] * 1000000))
"""

frame_iloc_big = Benchmark('df.iloc[:100,0]', setup,
                            start_date=datetime(2013, 1, 1))