1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
from vbench.benchmark import Benchmark
from datetime import datetime
SECTION = 'Indexing and scalar value access'
common_setup = """from pandas_vb_common import *
"""
#----------------------------------------------------------------------
# Series.__getitem__, get_value
setup = common_setup + """
tm.N = 1000
ts = tm.makeTimeSeries()
dt = ts.index[500]
"""
statement = "ts[dt]"
bm_getitem = Benchmark(statement, setup, ncalls=100000,
name='series_getitem_scalar')
setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
s = Series(np.random.rand(1000), index=index)
idx = index[100]
"""
statement = "s.get_value(idx)"
bm_df_getitem3 = Benchmark(statement, setup,
name='series_get_value',
start_date=datetime(2011, 11, 12))
#----------------------------------------------------------------------
# DataFrame __getitem__
setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = DataFrame(np.random.rand(1000, 30), index=index,
columns=columns)
idx = index[100]
col = columns[10]
"""
statement = "df[col][idx]"
bm_df_getitem = Benchmark(statement, setup,
name='dataframe_getitem_scalar')
setup = common_setup + """
try:
klass = DataMatrix
except:
klass = DataFrame
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = klass(np.random.rand(1000, 30), index=index,
columns=columns)
idx = index[100]
col = columns[10]
"""
statement = "df[col][idx]"
bm_df_getitem2 = Benchmark(statement, setup,
name='datamatrix_getitem_scalar')
#----------------------------------------------------------------------
# ix get scalar
setup = common_setup + """
index = [tm.rands(10) for _ in xrange(1000)]
columns = [tm.rands(10) for _ in xrange(30)]
df = DataFrame(np.random.randn(1000, 30), index=index,
columns=columns)
idx = index[100]
col = columns[10]
"""
indexing_frame_get_value_ix = Benchmark("df.ix[idx,col]", setup,
name='indexing_frame_get_value_ix',
start_date=datetime(2011, 11, 12))
indexing_frame_get_value = Benchmark("df.get_value(idx,col)", setup,
name='indexing_frame_get_value',
start_date=datetime(2011, 11, 12))
#----------------------------------------------------------------------
# Boolean DataFrame row selection
setup = common_setup + """
df = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
indexer = df['B'] > 0
obj_indexer = indexer.astype('O')
"""
indexing_dataframe_boolean_rows = \
Benchmark("df[indexer]", setup, name='indexing_dataframe_boolean_rows')
indexing_dataframe_boolean_rows_object = \
Benchmark("df[obj_indexer]", setup,
name='indexing_dataframe_boolean_rows_object')
setup = common_setup + """
df = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
"""
indexing_dataframe_boolean = \
Benchmark("df > df2", setup, name='indexing_dataframe_boolean',
start_date=datetime(2012, 1, 1))
setup = common_setup + """
import pandas.computation.expressions as expr
df = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
expr.set_numexpr_threads(1)
"""
indexing_dataframe_boolean_st = \
Benchmark("df > df2", setup, name='indexing_dataframe_boolean_st',cleanup="expr.set_numexpr_threads()",
start_date=datetime(2013, 2, 26))
setup = common_setup + """
import pandas.computation.expressions as expr
df = DataFrame(np.random.randn(50000, 100))
df2 = DataFrame(np.random.randn(50000, 100))
expr.set_use_numexpr(False)
"""
indexing_dataframe_boolean_no_ne = \
Benchmark("df > df2", setup, name='indexing_dataframe_boolean_no_ne',cleanup="expr.set_use_numexpr(True)",
start_date=datetime(2013, 2, 26))
#----------------------------------------------------------------------
# MultiIndex sortlevel
setup = common_setup + """
a = np.repeat(np.arange(100), 1000)
b = np.tile(np.arange(1000), 100)
midx = MultiIndex.from_arrays([a, b])
midx = midx.take(np.random.permutation(np.arange(100000)))
"""
sort_level_zero = Benchmark("midx.sortlevel(0)", setup,
start_date=datetime(2012, 1, 1))
sort_level_one = Benchmark("midx.sortlevel(1)", setup,
start_date=datetime(2012, 1, 1))
#----------------------------------------------------------------------
# Panel subset selection
setup = common_setup + """
p = Panel(np.random.randn(100, 100, 100))
inds = range(0, 100, 10)
"""
indexing_panel_subset = Benchmark('p.ix[inds, inds, inds]', setup,
start_date=datetime(2012, 1, 1))
#----------------------------------------------------------------------
# Iloc
setup = common_setup + """
df = DataFrame({'A' : [0.1] * 3000, 'B' : [1] * 3000})
idx = np.array(range(30)) * 99
df2 = DataFrame({'A' : [0.1] * 1000, 'B' : [1] * 1000})
df2 = concat([df2, 2*df2, 3*df2])
"""
frame_iloc_dups = Benchmark('df2.iloc[idx]', setup,
start_date=datetime(2013, 1, 1))
frame_loc_dups = Benchmark('df2.loc[idx]', setup,
start_date=datetime(2013, 1, 1))
setup = common_setup + """
df = DataFrame(dict( A = [ 'foo'] * 1000000))
"""
frame_iloc_big = Benchmark('df.iloc[:100,0]', setup,
start_date=datetime(2013, 1, 1))
|