File: tutorials.rst

package info (click to toggle)
pandas 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 54,924 kB
  • ctags: 53,113
  • sloc: python: 130,524; ansic: 11,510; sh: 329; makefile: 118
file content (126 lines) | stat: -rw-r--r-- 7,022 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
.. _tutorials:

*********
Tutorials
*********

This is a guide to many pandas tutorials, geared mainly for new users.

Internal Guides
---------------

pandas own :ref:`10 Minutes to pandas<10min>`

More complex recipes are in the :ref:`Cookbook<cookbook>`

pandas Cookbook
---------------

The goal of this cookbook (by `Julia Evans <http://jvns.ca>`_) is to
give you some concrete examples for getting started with pandas. These
are examples with real-world data, and all the bugs and weirdness that
that entails.

Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
repository <http://github.com/jvns/pandas-cookbook>`_. To run the examples in this tutorial, you'll need to
clone the GitHub repository and get IPython Notebook running.
See `How to use this cookbook <https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook>`_.

-  `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
   Shows off IPython's awesome tab completion and magic functions.
-  `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
   Reading your data into pandas is pretty much the easiest thing. Even
   when the encoding is wrong!
-  `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
   It's not totally obvious how to select data from a pandas dataframe.
   Here we explain the basics (how to take slices and get columns)
-  `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
   Here we get into serious slicing and dicing and learn how to filter
   dataframes in complicated ways, really fast.
-  `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
   Groupby/aggregate is seriously my favorite thing about pandas
   and I use it all the time. You should probably read this.
-  `Chapter 5:  <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
   Here you get to find out if it's cold in Montreal in the winter
   (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
-  `Chapter 6:  <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
   Strings with pandas are great. It has all these vectorized string
   operations and they're the best. We will turn a bunch of strings
   containing "Snow" into vectors of numbers in a trice.
-  `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
   Cleaning up messy data is never a joy, but with pandas it's easier.
-  `Chapter 8:  <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
   Parsing Unix timestamps is confusing at first but it turns out
   to be really easy.


Lessons for New pandas Users
----------------------------

For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`_.

- `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
  - Importing libraries
  - Creating data sets
  - Creating data frames
  - Reading from CSV
  - Exporting to CSV
  - Finding maximums
  - Plotting data

- `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
  - Reading from TXT
  - Exporting to TXT
  - Selecting top/bottom records
  - Descriptive statistics
  - Grouping/sorting data

- `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
  - Creating functions
  - Reading from EXCEL
  - Exporting to EXCEL
  - Outliers
  - Lambda functions
  - Slice and dice data

- `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
  - Adding/deleting columns
  - Index operations

- `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
  - Stack/Unstack/Transpose functions

- `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
  - GroupBy function

- `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
  - Ways to calculate outliers

- `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
  - Read from Microsoft SQL databases

- `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
  - Export to CSV/EXCEL/TXT

- `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
  - Converting between different kinds of formats

- `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
  - Combining data from various sources


Excel charts with pandas, vincent and xlsxwriter
------------------------------------------------

-  `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/>`_

Various Tutorials
-----------------

- `Wes McKinney's (pandas BDFL) blog <http://blog.wesmckinney.com/>`_
- `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
- `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
- `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
- `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
- `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
- `Pandas Tutorial, by Mikhail Semeniuk <http://www.bearrelroll.com/2013/05/python-pandas-tutorial>`_