File: visualization.rst

package info (click to toggle)
pandas 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 54,924 kB
  • ctags: 53,113
  • sloc: python: 130,524; ansic: 11,510; sh: 329; makefile: 118
file content (1146 lines) | stat: -rw-r--r-- 31,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
.. currentmodule:: pandas
.. _visualization:

.. ipython:: python
   :suppress:

   import numpy as np
   import pandas as pd
   from numpy.random import randn, rand, randint
   np.random.seed(123456)
   from pandas import DataFrame, Series, date_range, options
   import pandas.util.testing as tm
   np.set_printoptions(precision=4, suppress=True)
   import matplotlib.pyplot as plt
   plt.close('all')
   options.display.mpl_style = 'default'
   options.display.max_rows = 15
   from pandas.compat import lrange

********
Plotting
********

We use the standard convention for referencing the matplotlib API:

.. ipython:: python

   import matplotlib.pyplot as plt

.. versionadded:: 0.11.0

The ``display.mpl_style`` produces more appealing plots.
When set, matplotlib's ``rcParams`` are changed (globally!) to nicer-looking settings.
All the plots in the documentation are rendered with this option set to the
'default' style.

.. ipython:: python

   pd.options.display.mpl_style = 'default'

We provide the basics in pandas to easily create decent looking plots.
See the :ref:`ecosystem <ecosystem.visualization>` section for visualization
libraries that go beyond the basics documented here.

.. note::

   All calls to ``np.random`` are seeded with 123456.

.. _visualization.basic:

Basic Plotting: ``plot``
------------------------

See the :ref:`cookbook<cookbook.plotting>` for some advanced strategies

The ``plot`` method on Series and DataFrame is just a simple wrapper around
:meth:`plt.plot() <matplotlib.axes.Axes.plot>`:

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
   ts = ts.cumsum()

   @savefig series_plot_basic.png
   ts.plot()

If the index consists of dates, it calls :meth:`gcf().autofmt_xdate() <matplotlib.figure.Figure.autofmt_xdate>`
to try to format the x-axis nicely as per above.

On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the columns with labels:

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))
   df = df.cumsum()

   @savefig frame_plot_basic.png
   plt.figure(); df.plot();

You can plot one column versus another using the `x` and `y` keywords in
:meth:`~DataFrame.plot`:

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)

.. ipython:: python

   df3 = DataFrame(randn(1000, 2), columns=['B', 'C']).cumsum()
   df3['A'] = Series(list(range(len(df))))

   @savefig df_plot_xy.png
   df3.plot(x='A', y='B')

.. note::

   For more formatting and sytling options, see :ref:`below <visualization.formatting>`.

.. ipython:: python
    :suppress:

    plt.close('all')

.. _visualization.other:

Other Plots
-----------

The ``kind`` keyword argument of :meth:`~DataFrame.plot` accepts
a handful of values for plots other than the default Line plot.
These include:

* :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
* :ref:`'kde' <visualization.kde>` or ``'density'`` for density plots
* :ref:`'area' <visualization.area_plot>` for area plots
* :ref:`'scatter' <visualization.scatter_matrix>` for scatter plots
* :ref:`'hexbin' <visualization.hexbin>` for hexagonal bin plots
* :ref:`'pie' <visualization.pie>` for pie plots

In addition to these ``kind`` s, there are  the :ref:`DataFrame.hist() <visualization.hist>`,
and :ref:`DataFrame.boxplot() <visualization.box>` methods, which use a separate interface.

Finally, there are several :ref:`plotting functions <visualization.tools>` in ``pandas.tools.plotting``
that take a :class:`Series` or :class:`DataFrame` as an argument. These
include

* :ref:`Scatter Matrix <visualization.scatter_matrix>`
* :ref:`Andrews Curves <visualization.andrews_curves>`
* :ref:`Parallel Coordinates <visualization.parallel_coordinates>`
* :ref:`Lag Plot <visualization.lag>`
* :ref:`Autocorrelation Plot <visualization.autocorrelation>`
* :ref:`Bootstrap Plot <visualization.bootstrap>`
* :ref:`RadViz <visualization.radviz>`

Plots may also be adorned with :ref:`errorbars <visualization.errorbars>`
or :ref:`tables <visualization.table>`.

.. _visualization.barplot:

Bar plots
~~~~~~~~~

For labeled, non-time series data, you may wish to produce a bar plot:

.. ipython:: python

   plt.figure();

   @savefig bar_plot_ex.png
   df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')

Calling a DataFrame's :meth:`~DataFrame.plot` method with ``kind='bar'`` produces a multiple
bar plot:

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)

.. ipython:: python

   df2 = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])

   @savefig bar_plot_multi_ex.png
   df2.plot(kind='bar');

To produce a stacked bar plot, pass ``stacked=True``:

.. ipython:: python
   :suppress:

   plt.figure()

.. ipython:: python

   @savefig bar_plot_stacked_ex.png
   df2.plot(kind='bar', stacked=True);

To get horizontal bar plots, pass ``kind='barh'``:

.. ipython:: python
   :suppress:

   plt.figure()

.. ipython:: python

   @savefig barh_plot_stacked_ex.png
   df2.plot(kind='barh', stacked=True);

.. _visualization.hist:

Histograms
~~~~~~~~~~
.. ipython:: python

   plt.figure();

   @savefig hist_plot_ex.png
   df['A'].diff().hist()


:meth:`DataFrame.hist` plots the histograms of the columns on multiple
subplots:

.. ipython:: python

   plt.figure()

   @savefig frame_hist_ex.png
   df.diff().hist(color='k', alpha=0.5, bins=50)


.. versionadded:: 0.10.0

The ``by`` keyword can be specified to plot grouped histograms:

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)

.. ipython:: python

   data = Series(randn(1000))

   @savefig grouped_hist.png
   data.hist(by=randint(0, 4, 1000), figsize=(6, 4))


.. _visualization.box:

Box Plots
~~~~~~~~~

DataFrame has a :meth:`~DataFrame.boxplot` method that allows you to visualize the
distribution of values within each column.

For instance, here is a boxplot representing five trials of 10 observations of
a uniform random variable on [0,1).

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python
   :okwarning:

   df = DataFrame(rand(10,5))
   plt.figure();

   @savefig box_plot_ex.png
   bp = df.boxplot()

You can create a stratified boxplot using the ``by`` keyword argument to create
groupings.  For instance,

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python
   :okwarning:

   df = DataFrame(rand(10,2), columns=['Col1', 'Col2'] )
   df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])

   plt.figure();

   @savefig box_plot_ex2.png
   bp = df.boxplot(by='X')

You can also pass a subset of columns to plot, as well as group by multiple
columns:

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python
   :okwarning:

   df = DataFrame(rand(10,3), columns=['Col1', 'Col2', 'Col3'])
   df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])
   df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B'])

   plt.figure();

   @savefig box_plot_ex3.png
   bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])

.. ipython:: python
   :suppress:

    plt.close('all')

.. _visualization.box.return:

The return type of ``boxplot`` depends on two keyword arguments: ``by`` and ``return_type``.
When ``by`` is ``None``:

* if ``return_type`` is ``'dict'``, a dictionary containing the :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned. The keys are "boxes", "caps", "fliers", "medians", and "whiskers".
   This is the deafult.
* if ``return_type`` is ``'axes'``, a :class:`matplotlib Axes <matplotlib.axes.Axes>` containing the boxplot is returned.
* if ``return_type`` is ``'both'`` a namedtuple containging the :class:`matplotlib Axes <matplotlib.axes.Axes>`
   and :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned

When ``by`` is some column of the DataFrame, a dict of ``return_type`` is returned, where
the keys are the columns of the DataFrame. The plot has a facet for each column of
the DataFrame, with a separate box for each value of ``by``.

Finally, when calling boxplot on a :class:`Groupby` object, a dict of ``return_type``
is returned, where the keys are the same as the Groupby object. The plot has a
facet for each key, with each facet containing a box for each column of the
DataFrame.

.. ipython:: python
   :okwarning:

   np.random.seed(1234)
   df_box = DataFrame(np.random.randn(50, 2))
   df_box['g'] = np.random.choice(['A', 'B'], size=50)
   df_box.loc[df_box['g'] == 'B', 1] += 3

   @savefig boxplot_groupby.png
   bp = df_box.boxplot(by='g')

Compare to:

.. ipython:: python
   :okwarning:

   @savefig groupby_boxplot_vis.png
   bp = df_box.groupby('g').boxplot()

.. _visualization.area_plot:

Area Plot
~~~~~~~~~

.. versionadded:: 0.14

You can create area plots with ``Series.plot`` and ``DataFrame.plot`` by passing ``kind='area'``. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.

When input data contains `NaN`, it will be automatically filled by 0. If you want to drop or fill by different values, use :func:`dataframe.dropna` or :func:`dataframe.fillna` before calling `plot`.

.. ipython:: python
   :suppress:

   np.random.seed(123456)
   plt.figure()

.. ipython:: python

   df = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])

   @savefig area_plot_stacked.png
   df.plot(kind='area');

To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5 unless otherwise specified:

.. ipython:: python
   :suppress:

   plt.figure()

.. ipython:: python

   @savefig area_plot_unstacked.png
   df.plot(kind='area', stacked=False);

.. _visualization.hexbin:

Hexagonal Bin Plot
~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.14

You can create hexagonal bin plots with :meth:`DataFrame.plot` and
``kind='hexbin'``.
Hexbin plots can be a useful alternative to scatter plots if your data are
too dense to plot each point individually.

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)

.. ipython:: python

   df = DataFrame(randn(1000, 2), columns=['a', 'b'])
   df['b'] = df['b'] + np.arange(1000)

   @savefig hexbin_plot.png
   df.plot(kind='hexbin', x='a', y='b', gridsize=25)


A useful keyword argument is ``gridsize``; it controls the number of hexagons
in the x-direction, and defaults to 100. A larger ``gridsize`` means more, smaller
bins.

By default, a histogram of the counts around each ``(x, y)`` point is computed.
You can specify alternative aggregations by passing values to the ``C`` and
``reduce_C_function`` arguments. ``C`` specifies the value at each ``(x, y)`` point
and ``reduce_C_function`` is a function of one argument that reduces all the
values in a bin to a single number (e.g. ``mean``, ``max``, ``sum``, ``std``).  In this
example the positions are given by columns ``a`` and ``b``, while the value is
given by column ``z``. The bins are aggregated with numpy's ``max`` function.

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)

.. ipython:: python

   df = DataFrame(randn(1000, 2), columns=['a', 'b'])
   df['b'] = df['b'] = df['b'] + np.arange(1000)
   df['z'] = np.random.uniform(0, 3, 1000)

   @savefig hexbin_plot_agg.png
   df.plot(kind='hexbin', x='a', y='b', C='z', reduce_C_function=np.max,
           gridsize=25)


See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the
`matplotlib hexbin documenation <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hexbin>`__ for more.

.. _visualization.pie:

Pie plot
~~~~~~~~

.. versionadded:: 0.14

You can create a pie plot with :meth:`DataFrame.plot` or :meth:`Series.plot` with ``kind='pie'``.
If your data includes any ``NaN``, they will be automatically filled with 0.
A ``ValueError`` will be raised if there are any negative values in your data.

.. ipython:: python
   :suppress:

   np.random.seed(123456)
   plt.figure()

.. ipython:: python

   series = Series(3 * rand(4), index=['a', 'b', 'c', 'd'], name='series')

   @savefig series_pie_plot.png
   series.plot(kind='pie')

Note that pie plot with :class:`DataFrame` requires that you either specify a target column by the ``y``
argument or ``subplots=True``. When ``y`` is specified, pie plot of selected column
will be drawn. If ``subplots=True`` is specified, pie plots for each column are drawn as subplots.
A legend will be drawn in each pie plots by default; specify ``legend=False`` to hide it.

.. ipython:: python
   :suppress:

   np.random.seed(123456)
   plt.figure()

.. ipython:: python

   df = DataFrame(3 * rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])

   @savefig df_pie_plot.png
   df.plot(kind='pie', subplots=True)

You can use the ``labels`` and ``colors`` keywords to specify the labels and colors of each wedge.

.. warning::

   Most pandas plots use the the ``label`` and ``color`` arguments (not the lack of "s" on those).
   To be consistent with :func:`matplotlib.pyplot.pie` you must use ``labels`` and ``colors``.

If you want to hide wedge labels, specify ``labels=None``.
If ``fontsize`` is specified, the value will be applied to wedge labels.
Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.


.. ipython:: python
   :suppress:

   plt.figure()

.. ipython:: python

   @savefig series_pie_plot_options.png
   series.plot(kind='pie', labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
               autopct='%.2f', fontsize=20)

If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.

.. ipython:: python
   :suppress:

   plt.figure()

.. ipython:: python

   series = Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')

   @savefig series_pie_plot_semi.png
   series.plot(kind='pie')

See the `matplotlib pie documenation <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pie>`__ for more.

.. ipython:: python
    :suppress:

    plt.close('all')

.. _visualization.tools:

Plotting Tools
--------------

These functions can be imported from ``pandas.tools.plotting``
and take a :class:`Series` or :class:`DataFrame` as an argument.

.. _visualization.scatter_matrix:

Scatter Matrix Plot
~~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.7.3

You can create a scatter plot matrix using the
 ``scatter_matrix`` method in ``pandas.tools.plotting``:

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   from pandas.tools.plotting import scatter_matrix
   df = DataFrame(randn(1000, 4), columns=['a', 'b', 'c', 'd'])

   @savefig scatter_matrix_kde.png
   scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')

.. _visualization.kde:

Density Plot
~~~~~~~~~~~~

.. versionadded:: 0.8.0

You can create density plots using the Series/DataFrame.plot and
setting ``kind='kde'``:

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)

.. ipython:: python

   ser = Series(randn(1000))

   @savefig kde_plot.png
   ser.plot(kind='kde')

.. _visualization.andrews_curves:

Andrews Curves
~~~~~~~~~~~~~~

Andrews curves allow one to plot multivariate data as a large number
of curves that are created using the attributes of samples as coefficients
for Fourier series. By coloring these curves differently for each class
it is possible to visualize data clustering. Curves belonging to samples
of the same class will usually be closer together and form larger structures.

**Note**: The "Iris" dataset is available `here <https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv>`__.

.. ipython:: python

   from pandas import read_csv
   from pandas.tools.plotting import andrews_curves

   data = read_csv('data/iris.data')

   plt.figure()

   @savefig andrews_curves.png
   andrews_curves(data, 'Name')

.. _visualization.parallel_coordinates:

Parallel Coordinates
~~~~~~~~~~~~~~~~~~~~

Parallel coordinates is a plotting technique for plotting multivariate data.
It allows one to see clusters in data and to estimate other statistics visually.
Using parallel coordinates points are represented as connected line segments.
Each vertical line represents one attribute. One set of connected line segments
represents one data point. Points that tend to cluster will appear closer together.

.. ipython:: python

   from pandas import read_csv
   from pandas.tools.plotting import parallel_coordinates

   data = read_csv('data/iris.data')

   plt.figure()

   @savefig parallel_coordinates.png
   parallel_coordinates(data, 'Name')

.. _visualization.lag:

Lag Plot
~~~~~~~~

Lag plots are used to check if a data set or time series is random. Random
data should not exhibit any structure in the lag plot. Non-random structure
implies that the underlying data are not random.

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   from pandas.tools.plotting import lag_plot

   plt.figure()

   data = Series(0.1 * rand(1000) +
      0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))

   @savefig lag_plot.png
   lag_plot(data)

.. _visualization.autocorrelation:

Autocorrelation Plot
~~~~~~~~~~~~~~~~~~~~

Autocorrelation plots are often used for checking randomness in time series.
This is done by computing autocorrelations for data values at varying time lags.
If time series is random, such autocorrelations should be near zero for any and
all time-lag separations. If time series is non-random then one or more of the
autocorrelations will be significantly non-zero. The horizontal lines displayed
in the plot correspond to 95% and 99% confidence bands. The dashed line is 99%
confidence band.

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   from pandas.tools.plotting import autocorrelation_plot

   plt.figure()

   data = Series(0.7 * rand(1000) +
      0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))

   @savefig autocorrelation_plot.png
   autocorrelation_plot(data)

.. _visualization.bootstrap:

Bootstrap Plot
~~~~~~~~~~~~~~

Bootstrap plots are used to visually assess the uncertainty of a statistic, such
as mean, median, midrange, etc. A random subset of a specified size is selected
from a data set, the statistic in question is computed for this subset and the
process is repeated a specified number of times. Resulting plots and histograms
are what constitutes the bootstrap plot.

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   from pandas.tools.plotting import bootstrap_plot

   data = Series(rand(1000))

   @savefig bootstrap_plot.png
   bootstrap_plot(data, size=50, samples=500, color='grey')

.. ipython:: python
   :suppress:

    plt.close('all')

.. _visualization.radviz:

RadViz
~~~~~~

RadViz is a way of visualizing multi-variate data. It is based on a simple
spring tension minimization algorithm. Basically you set up a bunch of points in
a plane. In our case they are equally spaced on a unit circle. Each point
represents a single attribute. You then pretend that each sample in the data set
is attached to each of these points by a spring, the stiffness of which is
proportional to the numerical value of that attribute (they are normalized to
unit interval). The point in the plane, where our sample settles to (where the
forces acting on our sample are at an equilibrium) is where a dot representing
our sample will be drawn. Depending on which class that sample belongs it will
be colored differently.

**Note**: The "Iris" dataset is available `here <https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv>`__.

.. ipython:: python

   from pandas import read_csv
   from pandas.tools.plotting import radviz

   data = read_csv('data/iris.data')

   plt.figure()

   @savefig radviz.png
   radviz(data, 'Name')

.. _visualization.formatting:

Plot Formatting
---------------

Most plotting methods have a set of keyword arguments that control the
layout and formatting of the returned plot:

.. ipython:: python

   @savefig series_plot_basic2.png
   plt.figure(); ts.plot(style='k--', label='Series');

For each kind of plot (e.g. `line`, `bar`, `scatter`) any additional arguments
keywords are passed alogn to the corresponding matplotlib function
(:meth:`ax.plot() <matplotlib.axes.Axes.plot>`,
:meth:`ax.bar() <matplotlib.axes.Axes.bar>`,
:meth:`ax.scatter() <matplotlib.axes.Axes.scatter>`). These can be used
to control additional styling, beyond what pandas provides.

Controlling the Legend
~~~~~~~~~~~~~~~~~~~~~~

You may set the ``legend`` argument to ``False`` to hide the legend, which is
shown by default.

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))
   df = df.cumsum()

   @savefig frame_plot_basic_noleg.png
   df.plot(legend=False)

Scales
~~~~~~

You may pass ``logy`` to get a log-scale Y axis.

.. ipython:: python
   :suppress:

   plt.figure()
   np.random.seed(123456)


.. ipython:: python

   ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
   ts = np.exp(ts.cumsum())

   @savefig series_plot_logy.png
   ts.plot(logy=True)

See also the ``logx`` and ``loglog`` keyword arguments.

Plotting on a Secondary Y-axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To plot data on a secondary y-axis, use the ``secondary_y`` keyword:

.. ipython:: python
   :suppress:

   plt.figure()

.. ipython:: python

   df.A.plot()

   @savefig series_plot_secondary_y.png
   df.B.plot(secondary_y=True, style='g')

To plot some columns in a DataFrame, give the column names to the ``secondary_y``
keyword:

.. ipython:: python

   plt.figure()
   ax = df.plot(secondary_y=['A', 'B'])
   ax.set_ylabel('CD scale')
   @savefig frame_plot_secondary_y.png
   ax.right_ax.set_ylabel('AB scale')


Note that the columns plotted on the secondary y-axis is automatically marked
with "(right)" in the legend. To turn off the automatic marking, use the
``mark_right=False`` keyword:

.. ipython:: python

   plt.figure()

   @savefig frame_plot_secondary_y_no_right.png
   df.plot(secondary_y=['A', 'B'], mark_right=False)


Suppressing Tick Resolution Adjustment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

pandas includes automatically tick resolution adjustment for regular frequency
time-series data. For limited cases where pandas cannot infer the frequency
information (e.g., in an externally created ``twinx``), you can choose to
suppress this behavior for alignment purposes.

Here is the default behavior, notice how the x-axis tick labelling is performed:

.. ipython:: python

   plt.figure()

   @savefig ser_plot_suppress.png
   df.A.plot()


Using the ``x_compat`` parameter, you can suppress this behavior:

.. ipython:: python

   plt.figure()

   @savefig ser_plot_suppress_parm.png
   df.A.plot(x_compat=True)


If you have more than one plot that needs to be suppressed, the ``use`` method
in ``pandas.plot_params`` can be used in a `with statement`:

.. ipython:: python

   import pandas as pd

   plt.figure()

   @savefig ser_plot_suppress_context.png
   with pd.plot_params.use('x_compat', True):
       df.A.plot(color='r')
       df.B.plot(color='g')
       df.C.plot(color='b')

Subplots
~~~~~~~~

Each Series in a DataFrame can be plotted on a different axis
with the ``subplots`` keyword:

.. ipython:: python

   @savefig frame_plot_subplots.png
   df.plot(subplots=True, figsize=(6, 6));

Targeting Different Subplots
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can pass an ``ax`` argument to :meth:`Series.plot` to plot on a particular axis:

.. ipython:: python
   :suppress:

   np.random.seed(123456)
   ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
   ts = ts.cumsum()

   df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))
   df = df.cumsum()

.. ipython:: python

   fig, axes = plt.subplots(nrows=2, ncols=2)
   df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A')
   df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B')
   df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C')

   @savefig series_plot_multi.png
   df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')

.. ipython:: python
   :suppress:

    plt.close('all')

.. _visualization.errorbars:

Plotting With Error Bars
~~~~~~~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.14

Plotting with error bars is now supported in the :meth:`DataFrame.plot` and :meth:`Series.plot`

Horizontal and vertical errorbars can be supplied to the ``xerr`` and ``yerr`` keyword arguments to :meth:`~DataFrame.plot()`. The error values can be specified using a variety of formats.

- As a :class:`DataFrame` or ``dict`` of errors with column names matching the ``columns`` attribute of the plotting :class:`DataFrame` or matching the ``name`` attribute of the :class:`Series`
- As a ``str`` indicating which of the columns of plotting :class:`DataFrame` contain the error values
- As raw values (``list``, ``tuple``, or ``np.ndarray``). Must be the same length as the plotting :class:`DataFrame`/:class:`Series`

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a ``M`` length :class:`Series`, a ``Mx2`` array should be provided indicating lower and upper (or left and right) errors. For a ``MxN`` :class:`DataFrame`, asymmetrical errors should be in a ``Mx2xN`` array.

Here is an example of one way to easily plot group means with standard deviations from the raw data.

.. ipython:: python

   # Generate the data
   ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word'])
   df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)

   # Group by index labels and take the means and standard deviations for each group
   gp3 = df3.groupby(level=('letter', 'word'))
   means = gp3.mean()
   errors = gp3.std()
   means
   errors

   # Plot
   fig, ax = plt.subplots()
   @savefig errorbar_example.png
   means.plot(yerr=errors, ax=ax, kind='bar')

.. _visualization.table:

Plotting Tables
~~~~~~~~~~~~~~~

.. versionadded:: 0.14

Plotting with matplotlib table is now supported in  :meth:`DataFrame.plot` and :meth:`Series.plot` with a ``table`` keyword. The ``table`` keyword can accept ``bool``, :class:`DataFrame` or :class:`Series`. The simple way to draw a table is to specify ``table=True``. Data will be transposed to meet matplotlib's default layout.

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   fig, ax = plt.subplots(1, 1)
   df = DataFrame(rand(5, 3), columns=['a', 'b', 'c'])
   ax.get_xaxis().set_visible(False)   # Hide Ticks

   @savefig line_plot_table_true.png
   df.plot(table=True, ax=ax)

Also, you can pass different :class:`DataFrame` or :class:`Series` for ``table`` keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.

.. ipython:: python

   fig, ax = plt.subplots(1, 1)
   ax.get_xaxis().set_visible(False)   # Hide Ticks
   @savefig line_plot_table_data.png
   df.plot(table=np.round(df.T, 2), ax=ax)


Finally, there is a helper function ``pandas.tools.plotting.table`` to create a table from :class:`DataFrame` and :class:`Series`, and add it to an ``matplotlib.Axes``. This function can accept keywords which matplotlib table has.

.. ipython:: python

   from pandas.tools.plotting import table
   fig, ax = plt.subplots(1, 1)

   table(ax, np.round(df.describe(), 2),
         loc='upper right', colWidths=[0.2, 0.2, 0.2])

   @savefig line_plot_table_describe.png
   df.plot(ax=ax, ylim=(0, 2), legend=None)

**Note**: You can get table instances on the axes using ``axes.tables`` property for further decorations. See the `matplotlib table documenation <http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.table>`__ for more.

.. _visualization.colormaps:

Colormaps
~~~~~~~~~

A potential issue when plotting a large number of columns is that it can be
difficult to distinguish some series due to repetition in the default colors. To
remedy this, DataFrame plotting supports the use of the ``colormap=`` argument,
which accepts either a Matplotlib `colormap <http://matplotlib.org/api/cm_api.html>`__
or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available `here
<http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps>`__.

As matplotlib does not directly support colormaps for line-based plots, the
colors are selected based on an even spacing determined by the number of columns
in the DataFrame. There is no consideration made for background color, so some
colormaps will produce lines that are not easily visible.

To use the cubhelix colormap, we can simply pass ``'cubehelix'`` to ``colormap=``

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   df = DataFrame(randn(1000, 10), index=ts.index)
   df = df.cumsum()

   plt.figure()

   @savefig cubehelix.png
   df.plot(colormap='cubehelix')

or we can pass the colormap itself

.. ipython:: python

   from matplotlib import cm

   plt.figure()

   @savefig cubehelix_cm.png
   df.plot(colormap=cm.cubehelix)

Colormaps can also be used other plot types, like bar charts:

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   dd = DataFrame(randn(10, 10)).applymap(abs)
   dd = dd.cumsum()

   plt.figure()

   @savefig greens.png
   dd.plot(kind='bar', colormap='Greens')

Parallel coordinates charts:

.. ipython:: python

   plt.figure()

   @savefig parallel_gist_rainbow.png
   parallel_coordinates(data, 'Name', colormap='gist_rainbow')

Andrews curves charts:

.. ipython:: python

   plt.figure()

   @savefig andrews_curve_winter.png
   andrews_curves(data, 'Name', colormap='winter')


Plotting directly with matplotlib
---------------------------------

In some situations it may still be preferable or necessary to prepare plots
directly with matplotlib, for instance when a certain type of plot or
customization is not (yet) supported by pandas. Series and DataFrame objects
behave like arrays and can therefore be passed directly to matplotlib functions
without explicit casts.

pandas also automatically registers formatters and locators that recognize date
indices, thereby extending date and time support to practically all plot types
available in matplotlib. Although this formatting does not provide the same
level of refinement you would get when plotting via pandas, it can be faster
when plotting a large number of points.

.. note::

    The speed up for large data sets only applies to pandas 0.14.0 and later.

.. ipython:: python
   :suppress:

   np.random.seed(123456)

.. ipython:: python

   price = Series(randn(150).cumsum(),
                  index=date_range('2000-1-1', periods=150, freq='B'))
   ma = pd.rolling_mean(price, 20)
   mstd = pd.rolling_std(price, 20)

   plt.figure()

   plt.plot(price.index, price, 'k')
   plt.plot(ma.index, ma, 'b')
   @savefig bollinger.png
   plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)

.. ipython:: python
   :suppress:

    plt.close('all')