1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
|
.. currentmodule:: pandas
.. _visualization:
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
from numpy.random import randn, rand, randint
np.random.seed(123456)
from pandas import DataFrame, Series, date_range, options
import pandas.util.testing as tm
np.set_printoptions(precision=4, suppress=True)
import matplotlib.pyplot as plt
plt.close('all')
options.display.mpl_style = 'default'
options.display.max_rows = 15
from pandas.compat import lrange
********
Plotting
********
We use the standard convention for referencing the matplotlib API:
.. ipython:: python
import matplotlib.pyplot as plt
.. versionadded:: 0.11.0
The ``display.mpl_style`` produces more appealing plots.
When set, matplotlib's ``rcParams`` are changed (globally!) to nicer-looking settings.
All the plots in the documentation are rendered with this option set to the
'default' style.
.. ipython:: python
pd.options.display.mpl_style = 'default'
We provide the basics in pandas to easily create decent looking plots.
See the :ref:`ecosystem <ecosystem.visualization>` section for visualization
libraries that go beyond the basics documented here.
.. note::
All calls to ``np.random`` are seeded with 123456.
.. _visualization.basic:
Basic Plotting: ``plot``
------------------------
See the :ref:`cookbook<cookbook.plotting>` for some advanced strategies
The ``plot`` method on Series and DataFrame is just a simple wrapper around
:meth:`plt.plot() <matplotlib.axes.Axes.plot>`:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
@savefig series_plot_basic.png
ts.plot()
If the index consists of dates, it calls :meth:`gcf().autofmt_xdate() <matplotlib.figure.Figure.autofmt_xdate>`
to try to format the x-axis nicely as per above.
On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the columns with labels:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
@savefig frame_plot_basic.png
plt.figure(); df.plot();
You can plot one column versus another using the `x` and `y` keywords in
:meth:`~DataFrame.plot`:
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
df3 = DataFrame(randn(1000, 2), columns=['B', 'C']).cumsum()
df3['A'] = Series(list(range(len(df))))
@savefig df_plot_xy.png
df3.plot(x='A', y='B')
.. note::
For more formatting and sytling options, see :ref:`below <visualization.formatting>`.
.. ipython:: python
:suppress:
plt.close('all')
.. _visualization.other:
Other Plots
-----------
The ``kind`` keyword argument of :meth:`~DataFrame.plot` accepts
a handful of values for plots other than the default Line plot.
These include:
* :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
* :ref:`'kde' <visualization.kde>` or ``'density'`` for density plots
* :ref:`'area' <visualization.area_plot>` for area plots
* :ref:`'scatter' <visualization.scatter_matrix>` for scatter plots
* :ref:`'hexbin' <visualization.hexbin>` for hexagonal bin plots
* :ref:`'pie' <visualization.pie>` for pie plots
In addition to these ``kind`` s, there are the :ref:`DataFrame.hist() <visualization.hist>`,
and :ref:`DataFrame.boxplot() <visualization.box>` methods, which use a separate interface.
Finally, there are several :ref:`plotting functions <visualization.tools>` in ``pandas.tools.plotting``
that take a :class:`Series` or :class:`DataFrame` as an argument. These
include
* :ref:`Scatter Matrix <visualization.scatter_matrix>`
* :ref:`Andrews Curves <visualization.andrews_curves>`
* :ref:`Parallel Coordinates <visualization.parallel_coordinates>`
* :ref:`Lag Plot <visualization.lag>`
* :ref:`Autocorrelation Plot <visualization.autocorrelation>`
* :ref:`Bootstrap Plot <visualization.bootstrap>`
* :ref:`RadViz <visualization.radviz>`
Plots may also be adorned with :ref:`errorbars <visualization.errorbars>`
or :ref:`tables <visualization.table>`.
.. _visualization.barplot:
Bar plots
~~~~~~~~~
For labeled, non-time series data, you may wish to produce a bar plot:
.. ipython:: python
plt.figure();
@savefig bar_plot_ex.png
df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Calling a DataFrame's :meth:`~DataFrame.plot` method with ``kind='bar'`` produces a multiple
bar plot:
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
df2 = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])
@savefig bar_plot_multi_ex.png
df2.plot(kind='bar');
To produce a stacked bar plot, pass ``stacked=True``:
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
@savefig bar_plot_stacked_ex.png
df2.plot(kind='bar', stacked=True);
To get horizontal bar plots, pass ``kind='barh'``:
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
@savefig barh_plot_stacked_ex.png
df2.plot(kind='barh', stacked=True);
.. _visualization.hist:
Histograms
~~~~~~~~~~
.. ipython:: python
plt.figure();
@savefig hist_plot_ex.png
df['A'].diff().hist()
:meth:`DataFrame.hist` plots the histograms of the columns on multiple
subplots:
.. ipython:: python
plt.figure()
@savefig frame_hist_ex.png
df.diff().hist(color='k', alpha=0.5, bins=50)
.. versionadded:: 0.10.0
The ``by`` keyword can be specified to plot grouped histograms:
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
data = Series(randn(1000))
@savefig grouped_hist.png
data.hist(by=randint(0, 4, 1000), figsize=(6, 4))
.. _visualization.box:
Box Plots
~~~~~~~~~
DataFrame has a :meth:`~DataFrame.boxplot` method that allows you to visualize the
distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of
a uniform random variable on [0,1).
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = DataFrame(rand(10,5))
plt.figure();
@savefig box_plot_ex.png
bp = df.boxplot()
You can create a stratified boxplot using the ``by`` keyword argument to create
groupings. For instance,
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = DataFrame(rand(10,2), columns=['Col1', 'Col2'] )
df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])
plt.figure();
@savefig box_plot_ex2.png
bp = df.boxplot(by='X')
You can also pass a subset of columns to plot, as well as group by multiple
columns:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = DataFrame(rand(10,3), columns=['Col1', 'Col2', 'Col3'])
df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])
df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B'])
plt.figure();
@savefig box_plot_ex3.png
bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
.. ipython:: python
:suppress:
plt.close('all')
.. _visualization.box.return:
The return type of ``boxplot`` depends on two keyword arguments: ``by`` and ``return_type``.
When ``by`` is ``None``:
* if ``return_type`` is ``'dict'``, a dictionary containing the :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned. The keys are "boxes", "caps", "fliers", "medians", and "whiskers".
This is the deafult.
* if ``return_type`` is ``'axes'``, a :class:`matplotlib Axes <matplotlib.axes.Axes>` containing the boxplot is returned.
* if ``return_type`` is ``'both'`` a namedtuple containging the :class:`matplotlib Axes <matplotlib.axes.Axes>`
and :class:`matplotlib Lines <matplotlib.lines.Line2D>` is returned
When ``by`` is some column of the DataFrame, a dict of ``return_type`` is returned, where
the keys are the columns of the DataFrame. The plot has a facet for each column of
the DataFrame, with a separate box for each value of ``by``.
Finally, when calling boxplot on a :class:`Groupby` object, a dict of ``return_type``
is returned, where the keys are the same as the Groupby object. The plot has a
facet for each key, with each facet containing a box for each column of the
DataFrame.
.. ipython:: python
:okwarning:
np.random.seed(1234)
df_box = DataFrame(np.random.randn(50, 2))
df_box['g'] = np.random.choice(['A', 'B'], size=50)
df_box.loc[df_box['g'] == 'B', 1] += 3
@savefig boxplot_groupby.png
bp = df_box.boxplot(by='g')
Compare to:
.. ipython:: python
:okwarning:
@savefig groupby_boxplot_vis.png
bp = df_box.groupby('g').boxplot()
.. _visualization.area_plot:
Area Plot
~~~~~~~~~
.. versionadded:: 0.14
You can create area plots with ``Series.plot`` and ``DataFrame.plot`` by passing ``kind='area'``. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
When input data contains `NaN`, it will be automatically filled by 0. If you want to drop or fill by different values, use :func:`dataframe.dropna` or :func:`dataframe.fillna` before calling `plot`.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
df = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])
@savefig area_plot_stacked.png
df.plot(kind='area');
To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5 unless otherwise specified:
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
@savefig area_plot_unstacked.png
df.plot(kind='area', stacked=False);
.. _visualization.hexbin:
Hexagonal Bin Plot
~~~~~~~~~~~~~~~~~~
.. versionadded:: 0.14
You can create hexagonal bin plots with :meth:`DataFrame.plot` and
``kind='hexbin'``.
Hexbin plots can be a useful alternative to scatter plots if your data are
too dense to plot each point individually.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
df = DataFrame(randn(1000, 2), columns=['a', 'b'])
df['b'] = df['b'] + np.arange(1000)
@savefig hexbin_plot.png
df.plot(kind='hexbin', x='a', y='b', gridsize=25)
A useful keyword argument is ``gridsize``; it controls the number of hexagons
in the x-direction, and defaults to 100. A larger ``gridsize`` means more, smaller
bins.
By default, a histogram of the counts around each ``(x, y)`` point is computed.
You can specify alternative aggregations by passing values to the ``C`` and
``reduce_C_function`` arguments. ``C`` specifies the value at each ``(x, y)`` point
and ``reduce_C_function`` is a function of one argument that reduces all the
values in a bin to a single number (e.g. ``mean``, ``max``, ``sum``, ``std``). In this
example the positions are given by columns ``a`` and ``b``, while the value is
given by column ``z``. The bins are aggregated with numpy's ``max`` function.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
df = DataFrame(randn(1000, 2), columns=['a', 'b'])
df['b'] = df['b'] = df['b'] + np.arange(1000)
df['z'] = np.random.uniform(0, 3, 1000)
@savefig hexbin_plot_agg.png
df.plot(kind='hexbin', x='a', y='b', C='z', reduce_C_function=np.max,
gridsize=25)
See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the
`matplotlib hexbin documenation <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hexbin>`__ for more.
.. _visualization.pie:
Pie plot
~~~~~~~~
.. versionadded:: 0.14
You can create a pie plot with :meth:`DataFrame.plot` or :meth:`Series.plot` with ``kind='pie'``.
If your data includes any ``NaN``, they will be automatically filled with 0.
A ``ValueError`` will be raised if there are any negative values in your data.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
series = Series(3 * rand(4), index=['a', 'b', 'c', 'd'], name='series')
@savefig series_pie_plot.png
series.plot(kind='pie')
Note that pie plot with :class:`DataFrame` requires that you either specify a target column by the ``y``
argument or ``subplots=True``. When ``y`` is specified, pie plot of selected column
will be drawn. If ``subplots=True`` is specified, pie plots for each column are drawn as subplots.
A legend will be drawn in each pie plots by default; specify ``legend=False`` to hide it.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
df = DataFrame(3 * rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])
@savefig df_pie_plot.png
df.plot(kind='pie', subplots=True)
You can use the ``labels`` and ``colors`` keywords to specify the labels and colors of each wedge.
.. warning::
Most pandas plots use the the ``label`` and ``color`` arguments (not the lack of "s" on those).
To be consistent with :func:`matplotlib.pyplot.pie` you must use ``labels`` and ``colors``.
If you want to hide wedge labels, specify ``labels=None``.
If ``fontsize`` is specified, the value will be applied to wedge labels.
Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
@savefig series_pie_plot_options.png
series.plot(kind='pie', labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
autopct='%.2f', fontsize=20)
If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
series = Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')
@savefig series_pie_plot_semi.png
series.plot(kind='pie')
See the `matplotlib pie documenation <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pie>`__ for more.
.. ipython:: python
:suppress:
plt.close('all')
.. _visualization.tools:
Plotting Tools
--------------
These functions can be imported from ``pandas.tools.plotting``
and take a :class:`Series` or :class:`DataFrame` as an argument.
.. _visualization.scatter_matrix:
Scatter Matrix Plot
~~~~~~~~~~~~~~~~~~~
.. versionadded:: 0.7.3
You can create a scatter plot matrix using the
``scatter_matrix`` method in ``pandas.tools.plotting``:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.tools.plotting import scatter_matrix
df = DataFrame(randn(1000, 4), columns=['a', 'b', 'c', 'd'])
@savefig scatter_matrix_kde.png
scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
.. _visualization.kde:
Density Plot
~~~~~~~~~~~~
.. versionadded:: 0.8.0
You can create density plots using the Series/DataFrame.plot and
setting ``kind='kde'``:
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
ser = Series(randn(1000))
@savefig kde_plot.png
ser.plot(kind='kde')
.. _visualization.andrews_curves:
Andrews Curves
~~~~~~~~~~~~~~
Andrews curves allow one to plot multivariate data as a large number
of curves that are created using the attributes of samples as coefficients
for Fourier series. By coloring these curves differently for each class
it is possible to visualize data clustering. Curves belonging to samples
of the same class will usually be closer together and form larger structures.
**Note**: The "Iris" dataset is available `here <https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv>`__.
.. ipython:: python
from pandas import read_csv
from pandas.tools.plotting import andrews_curves
data = read_csv('data/iris.data')
plt.figure()
@savefig andrews_curves.png
andrews_curves(data, 'Name')
.. _visualization.parallel_coordinates:
Parallel Coordinates
~~~~~~~~~~~~~~~~~~~~
Parallel coordinates is a plotting technique for plotting multivariate data.
It allows one to see clusters in data and to estimate other statistics visually.
Using parallel coordinates points are represented as connected line segments.
Each vertical line represents one attribute. One set of connected line segments
represents one data point. Points that tend to cluster will appear closer together.
.. ipython:: python
from pandas import read_csv
from pandas.tools.plotting import parallel_coordinates
data = read_csv('data/iris.data')
plt.figure()
@savefig parallel_coordinates.png
parallel_coordinates(data, 'Name')
.. _visualization.lag:
Lag Plot
~~~~~~~~
Lag plots are used to check if a data set or time series is random. Random
data should not exhibit any structure in the lag plot. Non-random structure
implies that the underlying data are not random.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.tools.plotting import lag_plot
plt.figure()
data = Series(0.1 * rand(1000) +
0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
@savefig lag_plot.png
lag_plot(data)
.. _visualization.autocorrelation:
Autocorrelation Plot
~~~~~~~~~~~~~~~~~~~~
Autocorrelation plots are often used for checking randomness in time series.
This is done by computing autocorrelations for data values at varying time lags.
If time series is random, such autocorrelations should be near zero for any and
all time-lag separations. If time series is non-random then one or more of the
autocorrelations will be significantly non-zero. The horizontal lines displayed
in the plot correspond to 95% and 99% confidence bands. The dashed line is 99%
confidence band.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.tools.plotting import autocorrelation_plot
plt.figure()
data = Series(0.7 * rand(1000) +
0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))
@savefig autocorrelation_plot.png
autocorrelation_plot(data)
.. _visualization.bootstrap:
Bootstrap Plot
~~~~~~~~~~~~~~
Bootstrap plots are used to visually assess the uncertainty of a statistic, such
as mean, median, midrange, etc. A random subset of a specified size is selected
from a data set, the statistic in question is computed for this subset and the
process is repeated a specified number of times. Resulting plots and histograms
are what constitutes the bootstrap plot.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.tools.plotting import bootstrap_plot
data = Series(rand(1000))
@savefig bootstrap_plot.png
bootstrap_plot(data, size=50, samples=500, color='grey')
.. ipython:: python
:suppress:
plt.close('all')
.. _visualization.radviz:
RadViz
~~~~~~
RadViz is a way of visualizing multi-variate data. It is based on a simple
spring tension minimization algorithm. Basically you set up a bunch of points in
a plane. In our case they are equally spaced on a unit circle. Each point
represents a single attribute. You then pretend that each sample in the data set
is attached to each of these points by a spring, the stiffness of which is
proportional to the numerical value of that attribute (they are normalized to
unit interval). The point in the plane, where our sample settles to (where the
forces acting on our sample are at an equilibrium) is where a dot representing
our sample will be drawn. Depending on which class that sample belongs it will
be colored differently.
**Note**: The "Iris" dataset is available `here <https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv>`__.
.. ipython:: python
from pandas import read_csv
from pandas.tools.plotting import radviz
data = read_csv('data/iris.data')
plt.figure()
@savefig radviz.png
radviz(data, 'Name')
.. _visualization.formatting:
Plot Formatting
---------------
Most plotting methods have a set of keyword arguments that control the
layout and formatting of the returned plot:
.. ipython:: python
@savefig series_plot_basic2.png
plt.figure(); ts.plot(style='k--', label='Series');
For each kind of plot (e.g. `line`, `bar`, `scatter`) any additional arguments
keywords are passed alogn to the corresponding matplotlib function
(:meth:`ax.plot() <matplotlib.axes.Axes.plot>`,
:meth:`ax.bar() <matplotlib.axes.Axes.bar>`,
:meth:`ax.scatter() <matplotlib.axes.Axes.scatter>`). These can be used
to control additional styling, beyond what pandas provides.
Controlling the Legend
~~~~~~~~~~~~~~~~~~~~~~
You may set the ``legend`` argument to ``False`` to hide the legend, which is
shown by default.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
@savefig frame_plot_basic_noleg.png
df.plot(legend=False)
Scales
~~~~~~
You may pass ``logy`` to get a log-scale Y axis.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
ts = np.exp(ts.cumsum())
@savefig series_plot_logy.png
ts.plot(logy=True)
See also the ``logx`` and ``loglog`` keyword arguments.
Plotting on a Secondary Y-axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To plot data on a secondary y-axis, use the ``secondary_y`` keyword:
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
df.A.plot()
@savefig series_plot_secondary_y.png
df.B.plot(secondary_y=True, style='g')
To plot some columns in a DataFrame, give the column names to the ``secondary_y``
keyword:
.. ipython:: python
plt.figure()
ax = df.plot(secondary_y=['A', 'B'])
ax.set_ylabel('CD scale')
@savefig frame_plot_secondary_y.png
ax.right_ax.set_ylabel('AB scale')
Note that the columns plotted on the secondary y-axis is automatically marked
with "(right)" in the legend. To turn off the automatic marking, use the
``mark_right=False`` keyword:
.. ipython:: python
plt.figure()
@savefig frame_plot_secondary_y_no_right.png
df.plot(secondary_y=['A', 'B'], mark_right=False)
Suppressing Tick Resolution Adjustment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pandas includes automatically tick resolution adjustment for regular frequency
time-series data. For limited cases where pandas cannot infer the frequency
information (e.g., in an externally created ``twinx``), you can choose to
suppress this behavior for alignment purposes.
Here is the default behavior, notice how the x-axis tick labelling is performed:
.. ipython:: python
plt.figure()
@savefig ser_plot_suppress.png
df.A.plot()
Using the ``x_compat`` parameter, you can suppress this behavior:
.. ipython:: python
plt.figure()
@savefig ser_plot_suppress_parm.png
df.A.plot(x_compat=True)
If you have more than one plot that needs to be suppressed, the ``use`` method
in ``pandas.plot_params`` can be used in a `with statement`:
.. ipython:: python
import pandas as pd
plt.figure()
@savefig ser_plot_suppress_context.png
with pd.plot_params.use('x_compat', True):
df.A.plot(color='r')
df.B.plot(color='g')
df.C.plot(color='b')
Subplots
~~~~~~~~
Each Series in a DataFrame can be plotted on a different axis
with the ``subplots`` keyword:
.. ipython:: python
@savefig frame_plot_subplots.png
df.plot(subplots=True, figsize=(6, 6));
Targeting Different Subplots
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can pass an ``ax`` argument to :meth:`Series.plot` to plot on a particular axis:
.. ipython:: python
:suppress:
np.random.seed(123456)
ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
.. ipython:: python
fig, axes = plt.subplots(nrows=2, ncols=2)
df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A')
df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B')
df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C')
@savefig series_plot_multi.png
df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')
.. ipython:: python
:suppress:
plt.close('all')
.. _visualization.errorbars:
Plotting With Error Bars
~~~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 0.14
Plotting with error bars is now supported in the :meth:`DataFrame.plot` and :meth:`Series.plot`
Horizontal and vertical errorbars can be supplied to the ``xerr`` and ``yerr`` keyword arguments to :meth:`~DataFrame.plot()`. The error values can be specified using a variety of formats.
- As a :class:`DataFrame` or ``dict`` of errors with column names matching the ``columns`` attribute of the plotting :class:`DataFrame` or matching the ``name`` attribute of the :class:`Series`
- As a ``str`` indicating which of the columns of plotting :class:`DataFrame` contain the error values
- As raw values (``list``, ``tuple``, or ``np.ndarray``). Must be the same length as the plotting :class:`DataFrame`/:class:`Series`
Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a ``M`` length :class:`Series`, a ``Mx2`` array should be provided indicating lower and upper (or left and right) errors. For a ``MxN`` :class:`DataFrame`, asymmetrical errors should be in a ``Mx2xN`` array.
Here is an example of one way to easily plot group means with standard deviations from the raw data.
.. ipython:: python
# Generate the data
ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word'])
df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)
# Group by index labels and take the means and standard deviations for each group
gp3 = df3.groupby(level=('letter', 'word'))
means = gp3.mean()
errors = gp3.std()
means
errors
# Plot
fig, ax = plt.subplots()
@savefig errorbar_example.png
means.plot(yerr=errors, ax=ax, kind='bar')
.. _visualization.table:
Plotting Tables
~~~~~~~~~~~~~~~
.. versionadded:: 0.14
Plotting with matplotlib table is now supported in :meth:`DataFrame.plot` and :meth:`Series.plot` with a ``table`` keyword. The ``table`` keyword can accept ``bool``, :class:`DataFrame` or :class:`Series`. The simple way to draw a table is to specify ``table=True``. Data will be transposed to meet matplotlib's default layout.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
fig, ax = plt.subplots(1, 1)
df = DataFrame(rand(5, 3), columns=['a', 'b', 'c'])
ax.get_xaxis().set_visible(False) # Hide Ticks
@savefig line_plot_table_true.png
df.plot(table=True, ax=ax)
Also, you can pass different :class:`DataFrame` or :class:`Series` for ``table`` keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.
.. ipython:: python
fig, ax = plt.subplots(1, 1)
ax.get_xaxis().set_visible(False) # Hide Ticks
@savefig line_plot_table_data.png
df.plot(table=np.round(df.T, 2), ax=ax)
Finally, there is a helper function ``pandas.tools.plotting.table`` to create a table from :class:`DataFrame` and :class:`Series`, and add it to an ``matplotlib.Axes``. This function can accept keywords which matplotlib table has.
.. ipython:: python
from pandas.tools.plotting import table
fig, ax = plt.subplots(1, 1)
table(ax, np.round(df.describe(), 2),
loc='upper right', colWidths=[0.2, 0.2, 0.2])
@savefig line_plot_table_describe.png
df.plot(ax=ax, ylim=(0, 2), legend=None)
**Note**: You can get table instances on the axes using ``axes.tables`` property for further decorations. See the `matplotlib table documenation <http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.table>`__ for more.
.. _visualization.colormaps:
Colormaps
~~~~~~~~~
A potential issue when plotting a large number of columns is that it can be
difficult to distinguish some series due to repetition in the default colors. To
remedy this, DataFrame plotting supports the use of the ``colormap=`` argument,
which accepts either a Matplotlib `colormap <http://matplotlib.org/api/cm_api.html>`__
or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available `here
<http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps>`__.
As matplotlib does not directly support colormaps for line-based plots, the
colors are selected based on an even spacing determined by the number of columns
in the DataFrame. There is no consideration made for background color, so some
colormaps will produce lines that are not easily visible.
To use the cubhelix colormap, we can simply pass ``'cubehelix'`` to ``colormap=``
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
df = DataFrame(randn(1000, 10), index=ts.index)
df = df.cumsum()
plt.figure()
@savefig cubehelix.png
df.plot(colormap='cubehelix')
or we can pass the colormap itself
.. ipython:: python
from matplotlib import cm
plt.figure()
@savefig cubehelix_cm.png
df.plot(colormap=cm.cubehelix)
Colormaps can also be used other plot types, like bar charts:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
dd = DataFrame(randn(10, 10)).applymap(abs)
dd = dd.cumsum()
plt.figure()
@savefig greens.png
dd.plot(kind='bar', colormap='Greens')
Parallel coordinates charts:
.. ipython:: python
plt.figure()
@savefig parallel_gist_rainbow.png
parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Andrews curves charts:
.. ipython:: python
plt.figure()
@savefig andrews_curve_winter.png
andrews_curves(data, 'Name', colormap='winter')
Plotting directly with matplotlib
---------------------------------
In some situations it may still be preferable or necessary to prepare plots
directly with matplotlib, for instance when a certain type of plot or
customization is not (yet) supported by pandas. Series and DataFrame objects
behave like arrays and can therefore be passed directly to matplotlib functions
without explicit casts.
pandas also automatically registers formatters and locators that recognize date
indices, thereby extending date and time support to practically all plot types
available in matplotlib. Although this formatting does not provide the same
level of refinement you would get when plotting via pandas, it can be faster
when plotting a large number of points.
.. note::
The speed up for large data sets only applies to pandas 0.14.0 and later.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
price = Series(randn(150).cumsum(),
index=date_range('2000-1-1', periods=150, freq='B'))
ma = pd.rolling_mean(price, 20)
mstd = pd.rolling_std(price, 20)
plt.figure()
plt.plot(price.index, price, 'k')
plt.plot(ma.index, ma, 'b')
@savefig bollinger.png
plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
.. ipython:: python
:suppress:
plt.close('all')
|