File: advanced.rst

package info (click to toggle)
pandas 0.19.2-5.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 101,196 kB
  • ctags: 83,045
  • sloc: python: 210,909; ansic: 12,582; sh: 501; makefile: 130
file content (855 lines) | stat: -rw-r--r-- 24,799 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
.. _advanced:

.. currentmodule:: pandas

.. ipython:: python
   :suppress:

   import numpy as np
   import pandas as pd
   np.random.seed(123456)
   np.set_printoptions(precision=4, suppress=True)
   pd.options.display.max_rows=15

******************************
MultiIndex / Advanced Indexing
******************************

This section covers indexing with a ``MultiIndex`` and more advanced indexing features.

See the :ref:`Indexing and Selecting Data <indexing>` for general indexing documentation.

.. warning::

   Whether a copy or a reference is returned for a setting operation, may
   depend on the context.  This is sometimes called ``chained assignment`` and
   should be avoided.  See :ref:`Returning a View versus Copy
   <indexing.view_versus_copy>`

.. warning::

   In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
   but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This should be
   a transparent change with only very limited API implications (See the :ref:`Internal Refactoring <whatsnew_0150.refactoring>`)

See the :ref:`cookbook<cookbook.selection>` for some advanced strategies

.. _advanced.hierarchical:

Hierarchical indexing (MultiIndex)
----------------------------------

Hierarchical / Multi-level indexing is very exciting as it opens the door to some
quite sophisticated data analysis and manipulation, especially for working with
higher dimensional data. In essence, it enables you to store and manipulate
data with an arbitrary number of dimensions in lower dimensional data
structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by "hierarchical" indexing
and how it integrates with the all of the pandas indexing functionality
described above and in prior sections. Later, when discussing :ref:`group by
<groupby>` and :ref:`pivoting and reshaping data <reshaping>`, we'll show
non-trivial applications to illustrate how it aids in structuring data for
analysis.

See the :ref:`cookbook<cookbook.multi_index>` for some advanced strategies

Creating a MultiIndex (hierarchical index) object
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``MultiIndex`` object is the hierarchical analogue of the standard
``Index`` object which typically stores the axis labels in pandas objects. You
can think of ``MultiIndex`` an array of tuples where each tuple is unique. A
``MultiIndex`` can be created from a list of arrays (using
``MultiIndex.from_arrays``), an array of tuples (using
``MultiIndex.from_tuples``), or a crossed set of iterables (using
``MultiIndex.from_product``).  The ``Index`` constructor will attempt to return
a ``MultiIndex`` when it is passed a list of tuples.  The following examples
demo different ways to initialize MultiIndexes.


.. ipython:: python

   arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
   tuples = list(zip(*arrays))
   tuples

   index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
   index

   s = pd.Series(np.random.randn(8), index=index)
   s

When you want every pairing of the elements in two iterables, it can be easier
to use the ``MultiIndex.from_product`` function:

.. ipython:: python

   iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]
   pd.MultiIndex.from_product(iterables, names=['first', 'second'])

As a convenience, you can pass a list of arrays directly into Series or
DataFrame to construct a MultiIndex automatically:

.. ipython:: python

   arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
             np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]
   s = pd.Series(np.random.randn(8), index=arrays)
   s
   df = pd.DataFrame(np.random.randn(8, 4), index=arrays)
   df

All of the ``MultiIndex`` constructors accept a ``names`` argument which stores
string names for the levels themselves. If no names are provided, ``None`` will
be assigned:

.. ipython:: python

   df.index.names

This index can back any axis of a pandas object, and the number of **levels**
of the index is up to you:

.. ipython:: python

   df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
   df
   pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])

We've "sparsified" the higher levels of the indexes to make the console output a
bit easier on the eyes.

It's worth keeping in mind that there's nothing preventing you from using
tuples as atomic labels on an axis:

.. ipython:: python

   pd.Series(np.random.randn(8), index=tuples)

The reason that the ``MultiIndex`` matters is that it can allow you to do
grouping, selection, and reshaping operations as we will describe below and in
subsequent areas of the documentation. As you will see in later sections, you
can find yourself working with hierarchically-indexed data without creating a
``MultiIndex`` explicitly yourself. However, when loading data from a file, you
may wish to generate your own ``MultiIndex`` when preparing the data set.

Note that how the index is displayed by be controlled using the
``multi_sparse`` option in ``pandas.set_printoptions``:

.. ipython:: python

   pd.set_option('display.multi_sparse', False)
   df
   pd.set_option('display.multi_sparse', True)

.. _advanced.get_level_values:

Reconstructing the level labels
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The method ``get_level_values`` will return a vector of the labels for each
location at a particular level:

.. ipython:: python

   index.get_level_values(0)
   index.get_level_values('second')

Basic indexing on axis with MultiIndex
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

One of the important features of hierarchical indexing is that you can select
data by a "partial" label identifying a subgroup in the data. **Partial**
selection "drops" levels of the hierarchical index in the result in a
completely analogous way to selecting a column in a regular DataFrame:

.. ipython:: python

   df['bar']
   df['bar', 'one']
   df['bar']['one']
   s['qux']

See :ref:`Cross-section with hierarchical index <advanced.xs>` for how to select
on a deeper level.

.. note::

   The repr of a ``MultiIndex`` shows ALL the defined levels of an index, even
   if the they are not actually used. When slicing an index, you may notice this.
   For example:

   .. ipython:: python

      # original multi-index
      df.columns

      # sliced
      df[['foo','qux']].columns

   This is done to avoid a recomputation of the levels in order to make slicing
   highly performant. If you want to see the actual used levels.

   .. ipython:: python

      df[['foo','qux']].columns.values

      # for a specific level
      df[['foo','qux']].columns.get_level_values(0)

   To reconstruct the multiindex with only the used levels

   .. ipython:: python

      pd.MultiIndex.from_tuples(df[['foo','qux']].columns.values)

Data alignment and using ``reindex``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Operations between differently-indexed objects having ``MultiIndex`` on the
axes will work as you expect; data alignment will work the same as an Index of
tuples:

.. ipython:: python

   s + s[:-2]
   s + s[::2]

``reindex`` can be called with another ``MultiIndex`` or even a list or array
of tuples:

.. ipython:: python

   s.reindex(index[:3])
   s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])

.. _advanced.advanced_hierarchical:

Advanced indexing with hierarchical index
-----------------------------------------

Syntactically integrating ``MultiIndex`` in advanced indexing with ``.loc/.ix`` is a
bit challenging, but we've made every effort to do so. for example the
following works as you would expect:

.. ipython:: python

   df = df.T
   df
   df.loc['bar']
   df.loc['bar', 'two']

"Partial" slicing also works quite nicely.

.. ipython:: python

   df.loc['baz':'foo']

You can slice with a 'range' of values, by providing a slice of tuples.

.. ipython:: python

   df.loc[('baz', 'two'):('qux', 'one')]
   df.loc[('baz', 'two'):'foo']

Passing a list of labels or tuples works similar to reindexing:

.. ipython:: python

   df.ix[[('bar', 'two'), ('qux', 'one')]]

.. _advanced.mi_slicers:

Using slicers
~~~~~~~~~~~~~

.. versionadded:: 0.14.0

In 0.14.0 we added a new way to slice multi-indexed objects.
You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see :ref:`Selection by Label <indexing.label>`,
including slices, lists of labels, labels, and boolean indexers.

You can use ``slice(None)`` to select all the contents of *that* level. You do not need to specify all the
*deeper* levels, they will be implied as ``slice(None)``.

As usual, **both sides** of the slicers are included as this is label indexing.

.. warning::

   You should specify all axes in the ``.loc`` specifier, meaning the indexer for the **index** and
   for the **columns**. There are some ambiguous cases where the passed indexer could be mis-interpreted
   as indexing *both* axes, rather than into say the MuliIndex for the rows.

   You should do this:

   .. code-block:: python

      df.loc[(slice('A1','A3'),.....),:]

   rather than this:

   .. code-block:: python

      df.loc[(slice('A1','A3'),.....)]

.. ipython:: python

   def mklbl(prefix,n):
       return ["%s%s" % (prefix,i)  for i in range(n)]

   miindex = pd.MultiIndex.from_product([mklbl('A',4),
                                         mklbl('B',2),
                                         mklbl('C',4),
                                         mklbl('D',2)])
   micolumns = pd.MultiIndex.from_tuples([('a','foo'),('a','bar'),
                                          ('b','foo'),('b','bah')],
                                         names=['lvl0', 'lvl1'])
   dfmi = pd.DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns))),
                       index=miindex,
                       columns=micolumns).sort_index().sort_index(axis=1)
   dfmi

Basic multi-index slicing using slices, lists, and labels.

.. ipython:: python

   dfmi.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]

You can use a ``pd.IndexSlice`` to have a more natural syntax using ``:`` rather than using ``slice(None)``

.. ipython:: python

   idx = pd.IndexSlice
   dfmi.loc[idx[:,:,['C1','C3']],idx[:,'foo']]

It is possible to perform quite complicated selections using this method on multiple
axes at the same time.

.. ipython:: python

   dfmi.loc['A1',(slice(None),'foo')]
   dfmi.loc[idx[:,:,['C1','C3']],idx[:,'foo']]

Using a boolean indexer you can provide selection related to the *values*.

.. ipython:: python

   mask = dfmi[('a','foo')]>200
   dfmi.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]

You can also specify the ``axis`` argument to ``.loc`` to interpret the passed
slicers on a single axis.

.. ipython:: python

   dfmi.loc(axis=0)[:,:,['C1','C3']]

Furthermore you can *set* the values using these methods

.. ipython:: python

   df2 = dfmi.copy()
   df2.loc(axis=0)[:,:,['C1','C3']] = -10
   df2

You can use a right-hand-side of an alignable object as well.

.. ipython:: python

   df2 = dfmi.copy()
   df2.loc[idx[:,:,['C1','C3']],:] = df2*1000
   df2

.. _advanced.xs:

Cross-section
~~~~~~~~~~~~~

The ``xs`` method of ``DataFrame`` additionally takes a level argument to make
selecting data at a particular level of a MultiIndex easier.

.. ipython:: python

   df
   df.xs('one', level='second')

.. ipython:: python

   # using the slicers (new in 0.14.0)
   df.loc[(slice(None),'one'),:]

You can also select on the columns with :meth:`~pandas.MultiIndex.xs`, by
providing the axis argument

.. ipython:: python

   df = df.T
   df.xs('one', level='second', axis=1)

.. ipython:: python

   # using the slicers (new in 0.14.0)
   df.loc[:,(slice(None),'one')]

:meth:`~pandas.MultiIndex.xs` also allows selection with multiple keys

.. ipython:: python

   df.xs(('one', 'bar'), level=('second', 'first'), axis=1)

.. ipython:: python

   # using the slicers (new in 0.14.0)
   df.loc[:,('bar','one')]

.. versionadded:: 0.13.0

You can pass ``drop_level=False`` to :meth:`~pandas.MultiIndex.xs` to retain
the level that was selected

.. ipython:: python

   df.xs('one', level='second', axis=1, drop_level=False)

versus the result with ``drop_level=True`` (the default value)

.. ipython:: python

   df.xs('one', level='second', axis=1, drop_level=True)

.. ipython:: python
   :suppress:

   df = df.T

.. _advanced.advanced_reindex:

Advanced reindexing and alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The parameter ``level`` has been added to the ``reindex`` and ``align`` methods
of pandas objects. This is useful to broadcast values across a level. For
instance:

.. ipython:: python

   midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']],
                        labels=[[1,1,0,0],[1,0,1,0]])
   df = pd.DataFrame(np.random.randn(4,2), index=midx)
   df
   df2 = df.mean(level=0)
   df2
   df2.reindex(df.index, level=0)

   # aligning
   df_aligned, df2_aligned = df.align(df2, level=0)
   df_aligned
   df2_aligned


Swapping levels with :meth:`~pandas.MultiIndex.swaplevel`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``swaplevel`` function can switch the order of two levels:

.. ipython:: python

   df[:5]
   df[:5].swaplevel(0, 1, axis=0)

.. _advanced.reorderlevels:

Reordering levels with :meth:`~pandas.MultiIndex.reorder_levels`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``reorder_levels`` function generalizes the ``swaplevel`` function,
allowing you to permute the hierarchical index levels in one step:

.. ipython:: python

   df[:5].reorder_levels([1,0], axis=0)

Sorting a :class:`~pandas.MultiIndex`
-------------------------------------

For MultiIndex-ed objects to be indexed & sliced effectively, they need
to be sorted. As with any index, you can use ``sort_index``.

.. ipython:: python

   import random; random.shuffle(tuples)
   s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))
   s
   s.sort_index()
   s.sort_index(level=0)
   s.sort_index(level=1)

.. _advanced.sortlevel_byname:

You may also pass a level name to ``sort_index`` if the MultiIndex levels
are named.

.. ipython:: python

   s.index.set_names(['L1', 'L2'], inplace=True)
   s.sort_index(level='L1')
   s.sort_index(level='L2')

On higher dimensional objects, you can sort any of the other axes by level if
they have a MultiIndex:

.. ipython:: python

   df.T.sort_index(level=1, axis=1)

Indexing will work even if the data are not sorted, but will be rather
inefficient (and show a ``PerformanceWarning``). It will also
return a copy of the data rather than a view:

.. ipython:: python

   dfm = pd.DataFrame({'jim': [0, 0, 1, 1],
                       'joe': ['x', 'x', 'z', 'y'],
                       'jolie': np.random.rand(4)})
   dfm = dfm.set_index(['jim', 'joe'])
   dfm

.. code-block:: ipython

   In [4]: dfm.loc[(1, 'z')]
   PerformanceWarning: indexing past lexsort depth may impact performance.

   Out[4]:
              jolie
   jim joe
   1   z    0.64094

Furthermore if you try to index something that is not fully lexsorted, this can raise:

.. code-block:: ipython

    In [5]: dfm.loc[(0,'y'):(1, 'z')]
    KeyError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'

The ``is_lexsorted()`` method on an ``Index`` show if the index is sorted, and the ``lexsort_depth`` property returns the sort depth:

.. ipython:: python

   dfm.index.is_lexsorted()
   dfm.index.lexsort_depth

.. ipython:: python

   dfm = dfm.sort_index()
   dfm
   dfm.index.is_lexsorted()
   dfm.index.lexsort_depth

And now selection works as expected.

.. ipython:: python

   dfm.loc[(0,'y'):(1, 'z')]

Take Methods
------------

.. _advanced.take:

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides
the ``take`` method that retrieves elements along a given axis at the given
indices. The given indices must be either a list or an ndarray of integer
index positions. ``take`` will also accept negative integers as relative positions to the end of the object.

.. ipython:: python

   index = pd.Index(np.random.randint(0, 1000, 10))
   index

   positions = [0, 9, 3]

   index[positions]
   index.take(positions)

   ser = pd.Series(np.random.randn(10))

   ser.iloc[positions]
   ser.take(positions)

For DataFrames, the given indices should be a 1d list or ndarray that specifies
row or column positions.

.. ipython:: python

   frm = pd.DataFrame(np.random.randn(5, 3))

   frm.take([1, 4, 3])

   frm.take([0, 2], axis=1)

It is important to note that the ``take`` method on pandas objects are not
intended to work on boolean indices and may return unexpected results.

.. ipython:: python

   arr = np.random.randn(10)
   arr.take([False, False, True, True])
   arr[[0, 1]]

   ser = pd.Series(np.random.randn(10))
   ser.take([False, False, True, True])
   ser.ix[[0, 1]]

Finally, as a small note on performance, because the ``take`` method handles
a narrower range of inputs, it can offer performance that is a good deal
faster than fancy indexing.

.. ipython::

   arr = np.random.randn(10000, 5)
   indexer = np.arange(10000)
   random.shuffle(indexer)

   timeit arr[indexer]
   timeit arr.take(indexer, axis=0)

   ser = pd.Series(arr[:, 0])
   timeit ser.ix[indexer]
   timeit ser.take(indexer)

.. _indexing.index_types:

Index Types
-----------

We have discussed ``MultiIndex`` in the previous sections pretty extensively. ``DatetimeIndex`` and ``PeriodIndex``
are shown :ref:`here <timeseries.overview>`. ``TimedeltaIndex`` are :ref:`here <timedeltas.timedeltas>`.

In the following sub-sections we will highlite some other index types.

.. _indexing.categoricalindex:

CategoricalIndex
~~~~~~~~~~~~~~~~

.. versionadded:: 0.16.1

We introduce a ``CategoricalIndex``, a new type of index object that is useful for supporting
indexing with duplicates. This is a container around a ``Categorical`` (introduced in v0.15.0)
and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1,
setting the index of a ``DataFrame/Series`` with a ``category`` dtype would convert this to regular object-based ``Index``.

.. ipython:: python

   df = pd.DataFrame({'A': np.arange(6),
                      'B': list('aabbca')})
   df['B'] = df['B'].astype('category', categories=list('cab'))
   df
   df.dtypes
   df.B.cat.categories

Setting the index, will create create a ``CategoricalIndex``

.. ipython:: python

   df2 = df.set_index('B')
   df2.index

Indexing with ``__getitem__/.iloc/.loc/.ix`` works similarly to an ``Index`` with duplicates.
The indexers MUST be in the category or the operation will raise.

.. ipython:: python

   df2.loc['a']

These PRESERVE the ``CategoricalIndex``

.. ipython:: python

   df2.loc['a'].index

Sorting will order by the order of the categories

.. ipython:: python

   df2.sort_index()

Groupby operations on the index will preserve the index nature as well

.. ipython:: python

   df2.groupby(level=0).sum()
   df2.groupby(level=0).sum().index

Reindexing operations, will return a resulting index based on the type of the passed
indexer, meaning that passing a list will return a plain-old-``Index``; indexing with
a ``Categorical`` will return a ``CategoricalIndex``, indexed according to the categories
of the PASSED ``Categorical`` dtype. This allows one to arbitrarly index these even with
values NOT in the categories, similarly to how you can reindex ANY pandas index.

.. ipython :: python

   df2.reindex(['a','e'])
   df2.reindex(['a','e']).index
   df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
   df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index

.. warning::

   Reshaping and Comparison operations on a ``CategoricalIndex`` must have the same categories
   or a ``TypeError`` will be raised.

   .. code-block:: python

      In [9]: df3 = pd.DataFrame({'A' : np.arange(6),
                                  'B' : pd.Series(list('aabbca')).astype('category')})

      In [11]: df3 = df3.set_index('B')

      In [11]: df3.index
      Out[11]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'a', u'b', u'c'], ordered=False, name=u'B', dtype='category')

      In [12]: pd.concat([df2, df3]
      TypeError: categories must match existing categories when appending

.. _indexing.rangeindex:

Int64Index and RangeIndex
~~~~~~~~~~~~~~~~~~~~~~~~~

.. warning::

   Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see :ref:`here <whatsnew_0180.float_indexers>`.

``Int64Index`` is a fundamental basic index in *pandas*. This is an Immutable array implementing an ordered, sliceable set.
Prior to 0.18.0, the ``Int64Index`` would provide the default index for all ``NDFrame`` objects.

``RangeIndex`` is a sub-class of ``Int64Index`` added in version 0.18.0, now providing the default index for all ``NDFrame`` objects.
``RangeIndex`` is an optimized version of ``Int64Index`` that can represent a monotonic ordered set. These are analagous to python `range types <https://docs.python.org/3/library/stdtypes.html#typesseq-range>`__.

.. _indexing.float64index:

Float64Index
~~~~~~~~~~~~

.. note::

   As of 0.14.0, ``Float64Index`` is backed by a native ``float64`` dtype
   array. Prior to 0.14.0, ``Float64Index`` was backed by an ``object`` dtype
   array. Using a ``float64`` dtype in the backend speeds up arithmetic
   operations by about 30x and boolean indexing operations on the
   ``Float64Index`` itself are about 2x as fast.

.. versionadded:: 0.13.0

By default a ``Float64Index`` will be automatically created when passing floating, or mixed-integer-floating values in index creation.
This enables a pure label-based slicing paradigm that makes ``[],ix,loc`` for scalar indexing and slicing work exactly the
same.

.. ipython:: python

   indexf = pd.Index([1.5, 2, 3, 4.5, 5])
   indexf
   sf = pd.Series(range(5), index=indexf)
   sf

Scalar selection for ``[],.ix,.loc`` will always be label based. An integer will match an equal float index (e.g. ``3`` is equivalent to ``3.0``)

.. ipython:: python

   sf[3]
   sf[3.0]
   sf.ix[3]
   sf.ix[3.0]
   sf.loc[3]
   sf.loc[3.0]

The only positional indexing is via ``iloc``

.. ipython:: python

   sf.iloc[3]

A scalar index that is not found will raise ``KeyError``

Slicing is ALWAYS on the values of the index, for ``[],ix,loc`` and ALWAYS positional with ``iloc``

.. ipython:: python

   sf[2:4]
   sf.ix[2:4]
   sf.loc[2:4]
   sf.iloc[2:4]

In float indexes, slicing using floats is allowed

.. ipython:: python

   sf[2.1:4.6]
   sf.loc[2.1:4.6]

In non-float indexes, slicing using floats will raise a ``TypeError``

.. code-block:: ipython

   In [1]: pd.Series(range(5))[3.5]
   TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

   In [1]: pd.Series(range(5))[3.5:4.5]
   TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

.. warning::

   Using a scalar float indexer for ``.iloc`` has been removed in 0.18.0, so the following will raise a ``TypeError``

   .. code-block:: ipython

      In [3]: pd.Series(range(5)).iloc[3.0]
      TypeError: cannot do positional indexing on <class 'pandas.indexes.range.RangeIndex'> with these indexers [3.0] of <type 'float'>

   Further the treatment of ``.ix`` with a float indexer on a non-float index, will be label based, and thus coerce the index.

   .. ipython:: python

      s2 = pd.Series([1, 2, 3], index=list('abc'))
      s2
      s2.ix[1.0] = 10
      s2

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat
irregular timedelta-like indexing scheme, but the data is recorded as floats. This could for
example be millisecond offsets.

.. ipython:: python

   dfir = pd.concat([pd.DataFrame(np.random.randn(5,2),
                                  index=np.arange(5) * 250.0,
                                  columns=list('AB')),
                     pd.DataFrame(np.random.randn(6,2),
                                  index=np.arange(4,10) * 250.1,
                                  columns=list('AB'))])
   dfir

Selection operations then will always work on a value basis, for all selection operators.

.. ipython:: python

   dfir[0:1000.4]
   dfir.loc[0:1001,'A']
   dfir.loc[1000.4]

You could then easily pick out the first 1 second (1000 ms) of data then.

.. ipython:: python

   dfir[0:1000]

Of course if you need integer based selection, then use ``iloc``

.. ipython:: python

   dfir.iloc[0:5]