1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
.. _categorical:
.. currentmodule:: pandas
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
np.random.seed(123456)
np.set_printoptions(precision=4, suppress=True)
pd.options.display.max_rows = 15
****************
Categorical Data
****************
.. versionadded:: 0.15
.. note::
While there was `pandas.Categorical` in earlier versions, the ability to use
categorical data in `Series` and `DataFrame` is new.
This is an introduction to pandas categorical data type, including a short comparison
with R's ``factor``.
`Categoricals` are a pandas data type, which correspond to categorical variables in
statistics: a variable, which can take on only a limited, and usually fixed,
number of possible values (`categories`; `levels` in R). Examples are gender, social class,
blood types, country affiliations, observation time or ratings via Likert scales.
In contrast to statistical categorical variables, categorical data might have an order (e.g.
'strongly agree' vs 'agree' or 'first observation' vs. 'second observation'), but numerical
operations (additions, divisions, ...) are not possible.
All values of categorical data are either in `categories` or `np.nan`. Order is defined by
the order of `categories`, not lexical order of the values. Internally, the data structure
consists of a `categories` array and an integer array of `codes` which point to the real value in
the `categories` array.
The categorical data type is useful in the following cases:
* A string variable consisting of only a few different values. Converting such a string
variable to a categorical variable will save some memory, see :ref:`here <categorical.memory>`.
* The lexical order of a variable is not the same as the logical order ("one", "two", "three").
By converting to a categorical and specifying an order on the categories, sorting and
min/max will use the logical order instead of the lexical order, see :ref:`here <categorical.sort>`.
* As a signal to other python libraries that this column should be treated as a categorical
variable (e.g. to use suitable statistical methods or plot types).
See also the :ref:`API docs on categoricals<api.categorical>`.
Object Creation
---------------
Categorical `Series` or columns in a `DataFrame` can be created in several ways:
By specifying ``dtype="category"`` when constructing a `Series`:
.. ipython:: python
s = pd.Series(["a","b","c","a"], dtype="category")
s
By converting an existing `Series` or column to a ``category`` dtype:
.. ipython:: python
df = pd.DataFrame({"A":["a","b","c","a"]})
df["B"] = df["A"].astype('category')
df
By using some special functions:
.. ipython:: python
df = pd.DataFrame({'value': np.random.randint(0, 100, 20)})
labels = [ "{0} - {1}".format(i, i + 9) for i in range(0, 100, 10) ]
df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
df.head(10)
See :ref:`documentation <reshaping.tile.cut>` for :func:`~pandas.cut`.
By passing a :class:`pandas.Categorical` object to a `Series` or assigning it to a `DataFrame`.
.. ipython:: python
raw_cat = pd.Categorical(["a","b","c","a"], categories=["b","c","d"],
ordered=False)
s = pd.Series(raw_cat)
s
df = pd.DataFrame({"A":["a","b","c","a"]})
df["B"] = raw_cat
df
You can also specify differently ordered categories or make the resulting data ordered, by passing these arguments to ``astype()``:
.. ipython:: python
s = pd.Series(["a","b","c","a"])
s_cat = s.astype("category", categories=["b","c","d"], ordered=False)
s_cat
Categorical data has a specific ``category`` :ref:`dtype <basics.dtypes>`:
.. ipython:: python
df.dtypes
.. note::
In contrast to R's `factor` function, categorical data is not converting input values to
strings and categories will end up the same data type as the original values.
.. note::
In contrast to R's `factor` function, there is currently no way to assign/change labels at
creation time. Use `categories` to change the categories after creation time.
To get back to the original Series or `numpy` array, use ``Series.astype(original_dtype)`` or
``np.asarray(categorical)``:
.. ipython:: python
s = pd.Series(["a","b","c","a"])
s
s2 = s.astype('category')
s2
s3 = s2.astype('string')
s3
np.asarray(s2)
If you have already `codes` and `categories`, you can use the :func:`~pandas.Categorical.from_codes`
constructor to save the factorize step during normal constructor mode:
.. ipython:: python
splitter = np.random.choice([0,1], 5, p=[0.5,0.5])
s = pd.Series(pd.Categorical.from_codes(splitter, categories=["train", "test"]))
Description
-----------
Using ``.describe()`` on categorical data will produce similar output to a `Series` or
`DataFrame` of type ``string``.
.. ipython:: python
cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c"])
df = pd.DataFrame({"cat":cat, "s":["a", "c", "c", np.nan]})
df.describe()
df["cat"].describe()
Working with categories
-----------------------
Categorical data has a `categories` and a `ordered` property, which list their possible values and
whether the ordering matters or not. These properties are exposed as ``s.cat.categories`` and
``s.cat.ordered``. If you don't manually specify categories and ordering, they are inferred from the
passed in values.
.. ipython:: python
s = pd.Series(["a","b","c","a"], dtype="category")
s.cat.categories
s.cat.ordered
It's also possible to pass in the categories in a specific order:
.. ipython:: python
s = pd.Series(pd.Categorical(["a","b","c","a"], categories=["c","b","a"]))
s.cat.categories
s.cat.ordered
.. note::
New categorical data are NOT automatically ordered. You must explicitly pass ``ordered=True`` to
indicate an ordered ``Categorical``.
.. note::
The result of ``Series.unique()`` is not always the same as ``Series.cat.categories``,
because ``Series.unique()`` has a couple of guarantees, namely that it returns categories
in the order of appearance, and it only includes values that are actually present.
.. ipython:: python
s = pd.Series(list('babc')).astype('category', categories=list('abcd'))
s
# categories
s.cat.categories
# uniques
s.unique()
Renaming categories
~~~~~~~~~~~~~~~~~~~
Renaming categories is done by assigning new values to the ``Series.cat.categories`` property or
by using the :func:`Categorical.rename_categories` method:
.. ipython:: python
s = pd.Series(["a","b","c","a"], dtype="category")
s
s.cat.categories = ["Group %s" % g for g in s.cat.categories]
s
s.cat.rename_categories([1,2,3])
.. note::
In contrast to R's `factor`, categorical data can have categories of other types than string.
.. note::
Be aware that assigning new categories is an inplace operations, while most other operation
under ``Series.cat`` per default return a new Series of dtype `category`.
Categories must be unique or a `ValueError` is raised:
.. ipython:: python
try:
s.cat.categories = [1,1,1]
except ValueError as e:
print("ValueError: " + str(e))
Appending new categories
~~~~~~~~~~~~~~~~~~~~~~~~
Appending categories can be done by using the :func:`Categorical.add_categories` method:
.. ipython:: python
s = s.cat.add_categories([4])
s.cat.categories
s
Removing categories
~~~~~~~~~~~~~~~~~~~
Removing categories can be done by using the :func:`Categorical.remove_categories` method. Values
which are removed are replaced by ``np.nan``.:
.. ipython:: python
s = s.cat.remove_categories([4])
s
Removing unused categories
~~~~~~~~~~~~~~~~~~~~~~~~~~
Removing unused categories can also be done:
.. ipython:: python
s = pd.Series(pd.Categorical(["a","b","a"], categories=["a","b","c","d"]))
s
s.cat.remove_unused_categories()
Setting categories
~~~~~~~~~~~~~~~~~~
If you want to do remove and add new categories in one step (which has some speed advantage),
or simply set the categories to a predefined scale, use :func:`Categorical.set_categories`.
.. ipython:: python
s = pd.Series(["one","two","four", "-"], dtype="category")
s
s = s.cat.set_categories(["one","two","three","four"])
s
.. note::
Be aware that :func:`Categorical.set_categories` cannot know whether some category is omitted
intentionally or because it is misspelled or (under Python3) due to a type difference (e.g.,
numpys S1 dtype and python strings). This can result in surprising behaviour!
Sorting and Order
-----------------
.. _categorical.sort:
.. warning::
The default for construction has changed in v0.16.0 to ``ordered=False``, from the prior implicit ``ordered=True``
If categorical data is ordered (``s.cat.ordered == True``), then the order of the categories has a
meaning and certain operations are possible. If the categorical is unordered, ``.min()/.max()`` will raise a `TypeError`.
.. ipython:: python
s = pd.Series(pd.Categorical(["a","b","c","a"], ordered=False))
s.sort_values(inplace=True)
s = pd.Series(["a","b","c","a"]).astype('category', ordered=True)
s.sort_values(inplace=True)
s
s.min(), s.max()
You can set categorical data to be ordered by using ``as_ordered()`` or unordered by using ``as_unordered()``. These will by
default return a *new* object.
.. ipython:: python
s.cat.as_ordered()
s.cat.as_unordered()
Sorting will use the order defined by categories, not any lexical order present on the data type.
This is even true for strings and numeric data:
.. ipython:: python
s = pd.Series([1,2,3,1], dtype="category")
s = s.cat.set_categories([2,3,1], ordered=True)
s
s.sort_values(inplace=True)
s
s.min(), s.max()
Reordering
~~~~~~~~~~
Reordering the categories is possible via the :func:`Categorical.reorder_categories` and
the :func:`Categorical.set_categories` methods. For :func:`Categorical.reorder_categories`, all
old categories must be included in the new categories and no new categories are allowed. This will
necessarily make the sort order the same as the categories order.
.. ipython:: python
s = pd.Series([1,2,3,1], dtype="category")
s = s.cat.reorder_categories([2,3,1], ordered=True)
s
s.sort_values(inplace=True)
s
s.min(), s.max()
.. note::
Note the difference between assigning new categories and reordering the categories: the first
renames categories and therefore the individual values in the `Series`, but if the first
position was sorted last, the renamed value will still be sorted last. Reordering means that the
way values are sorted is different afterwards, but not that individual values in the
`Series` are changed.
.. note::
If the `Categorical` is not ordered, ``Series.min()`` and ``Series.max()`` will raise
``TypeError``. Numeric operations like ``+``, ``-``, ``*``, ``/`` and operations based on them
(e.g. ``Series.median()``, which would need to compute the mean between two values if the length
of an array is even) do not work and raise a ``TypeError``.
Multi Column Sorting
~~~~~~~~~~~~~~~~~~~~
A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns.
The ordering of the categorical is determined by the ``categories`` of that column.
.. ipython:: python
dfs = pd.DataFrame({'A' : pd.Categorical(list('bbeebbaa'), categories=['e','a','b'], ordered=True),
'B' : [1,2,1,2,2,1,2,1] })
dfs.sort_values(by=['A', 'B'])
Reordering the ``categories`` changes a future sort.
.. ipython:: python
dfs['A'] = dfs['A'].cat.reorder_categories(['a','b','e'])
dfs.sort_values(by=['A','B'])
Comparisons
-----------
Comparing categorical data with other objects is possible in three cases:
* comparing equality (``==`` and ``!=``) to a list-like object (list, Series, array,
...) of the same length as the categorical data.
* all comparisons (``==``, ``!=``, ``>``, ``>=``, ``<``, and ``<=``) of categorical data to
another categorical Series, when ``ordered==True`` and the `categories` are the same.
* all comparisons of a categorical data to a scalar.
All other comparisons, especially "non-equality" comparisons of two categoricals with different
categories or a categorical with any list-like object, will raise a TypeError.
.. note::
Any "non-equality" comparisons of categorical data with a `Series`, `np.array`, `list` or
categorical data with different categories or ordering will raise an `TypeError` because custom
categories ordering could be interpreted in two ways: one with taking into account the
ordering and one without.
.. ipython:: python
cat = pd.Series([1,2,3]).astype("category", categories=[3,2,1], ordered=True)
cat_base = pd.Series([2,2,2]).astype("category", categories=[3,2,1], ordered=True)
cat_base2 = pd.Series([2,2,2]).astype("category", ordered=True)
cat
cat_base
cat_base2
Comparing to a categorical with the same categories and ordering or to a scalar works:
.. ipython:: python
cat > cat_base
cat > 2
Equality comparisons work with any list-like object of same length and scalars:
.. ipython:: python
cat == cat_base
cat == np.array([1,2,3])
cat == 2
This doesn't work because the categories are not the same:
.. ipython:: python
try:
cat > cat_base2
except TypeError as e:
print("TypeError: " + str(e))
If you want to do a "non-equality" comparison of a categorical series with a list-like object
which is not categorical data, you need to be explicit and convert the categorical data back to
the original values:
.. ipython:: python
base = np.array([1,2,3])
try:
cat > base
except TypeError as e:
print("TypeError: " + str(e))
np.asarray(cat) > base
Operations
----------
Apart from ``Series.min()``, ``Series.max()`` and ``Series.mode()``, the following operations are
possible with categorical data:
`Series` methods like `Series.value_counts()` will use all categories, even if some categories are not
present in the data:
.. ipython:: python
s = pd.Series(pd.Categorical(["a","b","c","c"], categories=["c","a","b","d"]))
s.value_counts()
Groupby will also show "unused" categories:
.. ipython:: python
cats = pd.Categorical(["a","b","b","b","c","c","c"], categories=["a","b","c","d"])
df = pd.DataFrame({"cats":cats,"values":[1,2,2,2,3,4,5]})
df.groupby("cats").mean()
cats2 = pd.Categorical(["a","a","b","b"], categories=["a","b","c"])
df2 = pd.DataFrame({"cats":cats2,"B":["c","d","c","d"], "values":[1,2,3,4]})
df2.groupby(["cats","B"]).mean()
Pivot tables:
.. ipython:: python
raw_cat = pd.Categorical(["a","a","b","b"], categories=["a","b","c"])
df = pd.DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]})
pd.pivot_table(df, values='values', index=['A', 'B'])
Data munging
------------
The optimized pandas data access methods ``.loc``, ``.iloc``, ``.ix`` ``.at``, and ``.iat``,
work as normal. The only difference is the return type (for getting) and
that only values already in `categories` can be assigned.
Getting
~~~~~~~
If the slicing operation returns either a `DataFrame` or a column of type `Series`,
the ``category`` dtype is preserved.
.. ipython:: python
idx = pd.Index(["h","i","j","k","l","m","n",])
cats = pd.Series(["a","b","b","b","c","c","c"], dtype="category", index=idx)
values= [1,2,2,2,3,4,5]
df = pd.DataFrame({"cats":cats,"values":values}, index=idx)
df.iloc[2:4,:]
df.iloc[2:4,:].dtypes
df.loc["h":"j","cats"]
df.ix["h":"j",0:1]
df[df["cats"] == "b"]
An example where the category type is not preserved is if you take one single row: the
resulting `Series` is of dtype ``object``:
.. ipython:: python
# get the complete "h" row as a Series
df.loc["h", :]
Returning a single item from categorical data will also return the value, not a categorical
of length "1".
.. ipython:: python
df.iat[0,0]
df["cats"].cat.categories = ["x","y","z"]
df.at["h","cats"] # returns a string
.. note::
This is a difference to R's `factor` function, where ``factor(c(1,2,3))[1]``
returns a single value `factor`.
To get a single value `Series` of type ``category`` pass in a list with a single value:
.. ipython:: python
df.loc[["h"],"cats"]
String and datetime accessors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 0.17.1
The accessors ``.dt`` and ``.str`` will work if the ``s.cat.categories`` are of an appropriate
type:
.. ipython:: python
str_s = pd.Series(list('aabb'))
str_cat = str_s.astype('category')
str_cat
str_cat.str.contains("a")
date_s = pd.Series(pd.date_range('1/1/2015', periods=5))
date_cat = date_s.astype('category')
date_cat
date_cat.dt.day
.. note::
The returned ``Series`` (or ``DataFrame``) is of the same type as if you used the
``.str.<method>`` / ``.dt.<method>`` on a ``Series`` of that type (and not of
type ``category``!).
That means, that the returned values from methods and properties on the accessors of a
``Series`` and the returned values from methods and properties on the accessors of this
``Series`` transformed to one of type `category` will be equal:
.. ipython:: python
ret_s = str_s.str.contains("a")
ret_cat = str_cat.str.contains("a")
ret_s.dtype == ret_cat.dtype
ret_s == ret_cat
.. note::
The work is done on the ``categories`` and then a new ``Series`` is constructed. This has
some performance implication if you have a ``Series`` of type string, where lots of elements
are repeated (i.e. the number of unique elements in the ``Series`` is a lot smaller than the
length of the ``Series``). In this case it can be faster to convert the original ``Series``
to one of type ``category`` and use ``.str.<method>`` or ``.dt.<property>`` on that.
Setting
~~~~~~~
Setting values in a categorical column (or `Series`) works as long as the value is included in the
`categories`:
.. ipython:: python
idx = pd.Index(["h","i","j","k","l","m","n"])
cats = pd.Categorical(["a","a","a","a","a","a","a"], categories=["a","b"])
values = [1,1,1,1,1,1,1]
df = pd.DataFrame({"cats":cats,"values":values}, index=idx)
df.iloc[2:4,:] = [["b",2],["b",2]]
df
try:
df.iloc[2:4,:] = [["c",3],["c",3]]
except ValueError as e:
print("ValueError: " + str(e))
Setting values by assigning categorical data will also check that the `categories` match:
.. ipython:: python
df.loc["j":"k","cats"] = pd.Categorical(["a","a"], categories=["a","b"])
df
try:
df.loc["j":"k","cats"] = pd.Categorical(["b","b"], categories=["a","b","c"])
except ValueError as e:
print("ValueError: " + str(e))
Assigning a `Categorical` to parts of a column of other types will use the values:
.. ipython:: python
df = pd.DataFrame({"a":[1,1,1,1,1], "b":["a","a","a","a","a"]})
df.loc[1:2,"a"] = pd.Categorical(["b","b"], categories=["a","b"])
df.loc[2:3,"b"] = pd.Categorical(["b","b"], categories=["a","b"])
df
df.dtypes
Merging
~~~~~~~
You can concat two `DataFrames` containing categorical data together,
but the categories of these categoricals need to be the same:
.. ipython:: python
cat = pd.Series(["a","b"], dtype="category")
vals = [1,2]
df = pd.DataFrame({"cats":cat, "vals":vals})
res = pd.concat([df,df])
res
res.dtypes
In this case the categories are not the same and so an error is raised:
.. ipython:: python
df_different = df.copy()
df_different["cats"].cat.categories = ["c","d"]
try:
pd.concat([df,df_different])
except ValueError as e:
print("ValueError: " + str(e))
The same applies to ``df.append(df_different)``.
.. _categorical.union:
Unioning
~~~~~~~~
.. versionadded:: 0.19.0
If you want to combine categoricals that do not necessarily have
the same categories, the ``union_categoricals`` function will
combine a list-like of categoricals. The new categories
will be the union of the categories being combined.
.. ipython:: python
from pandas.types.concat import union_categoricals
a = pd.Categorical(["b", "c"])
b = pd.Categorical(["a", "b"])
union_categoricals([a, b])
By default, the resulting categories will be ordered as
they appear in the data. If you want the categories to
be lexsorted, use ``sort_categories=True`` argument.
.. ipython:: python
union_categoricals([a, b], sort_categories=True)
``union_categoricals`` also works with the "easy" case of combining two
categoricals of the same categories and order information
(e.g. what you could also ``append`` for).
.. ipython:: python
a = pd.Categorical(["a", "b"], ordered=True)
b = pd.Categorical(["a", "b", "a"], ordered=True)
union_categoricals([a, b])
The below raises ``TypeError`` because the categories are ordered and not identical.
.. code-block:: ipython
In [1]: a = pd.Categorical(["a", "b"], ordered=True)
In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True)
In [3]: union_categoricals([a, b])
Out[3]:
TypeError: to union ordered Categoricals, all categories must be the same
``union_categoricals`` also works with a ``CategoricalIndex``, or ``Series`` containing
categorical data, but note that the resulting array will always be a plain ``Categorical``
.. ipython:: python
a = pd.Series(["b", "c"], dtype='category')
b = pd.Series(["a", "b"], dtype='category')
union_categoricals([a, b])
.. note::
``union_categoricals`` may recode the integer codes for categories
when combining categoricals. This is likely what you want,
but if you are relying on the exact numbering of the categories, be
aware.
.. ipython:: python
c1 = pd.Categorical(["b", "c"])
c2 = pd.Categorical(["a", "b"])
c1
# "b" is coded to 0
c1.codes
c2
# "b" is coded to 1
c2.codes
c = union_categoricals([c1, c2])
c
# "b" is coded to 0 throughout, same as c1, different from c2
c.codes
.. _categorical.concat:
Concatenation
~~~~~~~~~~~~~
This section describes concatenations specific to ``category`` dtype. See :ref:`Concatenating objects<merging.concat>` for general description.
By default, ``Series`` or ``DataFrame`` concatenation which contains the same categories
results in ``category`` dtype, otherwise results in ``object`` dtype.
Use ``.astype`` or ``union_categoricals`` to get ``category`` result.
.. ipython:: python
# same categories
s1 = pd.Series(['a', 'b'], dtype='category')
s2 = pd.Series(['a', 'b', 'a'], dtype='category')
pd.concat([s1, s2])
# different categories
s3 = pd.Series(['b', 'c'], dtype='category')
pd.concat([s1, s3])
pd.concat([s1, s3]).astype('category')
union_categoricals([s1.values, s3.values])
Following table summarizes the results of ``Categoricals`` related concatenations.
+----------+--------------------------------------------------------+----------------------------+
| arg1 | arg2 | result |
+==========+========================================================+============================+
| category | category (identical categories) | category |
+----------+--------------------------------------------------------+----------------------------+
| category | category (different categories, both not ordered) | object (dtype is inferred) |
+----------+--------------------------------------------------------+----------------------------+
| category | category (different categories, either one is ordered) | object (dtype is inferred) |
+----------+--------------------------------------------------------+----------------------------+
| category | not category | object (dtype is inferred) |
+----------+--------------------------------------------------------+----------------------------+
Getting Data In/Out
-------------------
.. versionadded:: 0.15.2
Writing data (`Series`, `Frames`) to a HDF store that contains a ``category`` dtype was implemented
in 0.15.2. See :ref:`here <io.hdf5-categorical>` for an example and caveats.
Writing data to and reading data from *Stata* format files was implemented in
0.15.2. See :ref:`here <io.stata-categorical>` for an example and caveats.
Writing to a CSV file will convert the data, effectively removing any information about the
categorical (categories and ordering). So if you read back the CSV file you have to convert the
relevant columns back to `category` and assign the right categories and categories ordering.
.. ipython:: python
:suppress:
from pandas.compat import StringIO
.. ipython:: python
s = pd.Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'd']))
# rename the categories
s.cat.categories = ["very good", "good", "bad"]
# reorder the categories and add missing categories
s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
df = pd.DataFrame({"cats":s, "vals":[1,2,3,4,5,6]})
csv = StringIO()
df.to_csv(csv)
df2 = pd.read_csv(StringIO(csv.getvalue()))
df2.dtypes
df2["cats"]
# Redo the category
df2["cats"] = df2["cats"].astype("category")
df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"],
inplace=True)
df2.dtypes
df2["cats"]
The same holds for writing to a SQL database with ``to_sql``.
Missing Data
------------
pandas primarily uses the value `np.nan` to represent missing data. It is by
default not included in computations. See the :ref:`Missing Data section
<missing_data>`.
Missing values should **not** be included in the Categorical's ``categories``,
only in the ``values``.
Instead, it is understood that NaN is different, and is always a possibility.
When working with the Categorical's ``codes``, missing values will always have
a code of ``-1``.
.. ipython:: python
s = pd.Series(["a", "b", np.nan, "a"], dtype="category")
# only two categories
s
s.cat.codes
Methods for working with missing data, e.g. :meth:`~Series.isnull`, :meth:`~Series.fillna`,
:meth:`~Series.dropna`, all work normally:
.. ipython:: python
s = pd.Series(["a", "b", np.nan], dtype="category")
s
pd.isnull(s)
s.fillna("a")
Differences to R's `factor`
---------------------------
The following differences to R's factor functions can be observed:
* R's `levels` are named `categories`
* R's `levels` are always of type string, while `categories` in pandas can be of any dtype.
* It's not possible to specify labels at creation time. Use ``s.cat.rename_categories(new_labels)``
afterwards.
* In contrast to R's `factor` function, using categorical data as the sole input to create a
new categorical series will *not* remove unused categories but create a new categorical series
which is equal to the passed in one!
* R allows for missing values to be included in its `levels` (pandas' `categories`). Pandas
does not allow `NaN` categories, but missing values can still be in the `values`.
Gotchas
-------
.. _categorical.rfactor:
Memory Usage
~~~~~~~~~~~~
.. _categorical.memory:
The memory usage of a ``Categorical`` is proportional to the number of categories times the length of the data. In contrast,
an ``object`` dtype is a constant times the length of the data.
.. ipython:: python
s = pd.Series(['foo','bar']*1000)
# object dtype
s.nbytes
# category dtype
s.astype('category').nbytes
.. note::
If the number of categories approaches the length of the data, the ``Categorical`` will use nearly the same or
more memory than an equivalent ``object`` dtype representation.
.. ipython:: python
s = pd.Series(['foo%04d' % i for i in range(2000)])
# object dtype
s.nbytes
# category dtype
s.astype('category').nbytes
Old style constructor usage
~~~~~~~~~~~~~~~~~~~~~~~~~~~
In earlier versions than pandas 0.15, a `Categorical` could be constructed by passing in precomputed
`codes` (called then `labels`) instead of values with categories. The `codes` were interpreted as
pointers to the categories with `-1` as `NaN`. This type of constructor usage is replaced by
the special constructor :func:`Categorical.from_codes`.
Unfortunately, in some special cases, using code which assumes the old style constructor usage
will work with the current pandas version, resulting in subtle bugs:
.. code-block:: python
>>> cat = pd.Categorical([1,2], [1,2,3])
>>> # old version
>>> cat.get_values()
array([2, 3], dtype=int64)
>>> # new version
>>> cat.get_values()
array([1, 2], dtype=int64)
.. warning::
If you used `Categoricals` with older versions of pandas, please audit your code before
upgrading and change your code to use the :func:`~pandas.Categorical.from_codes`
constructor.
`Categorical` is not a `numpy` array
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, categorical data and the underlying `Categorical` is implemented as a python
object and not as a low-level `numpy` array dtype. This leads to some problems.
`numpy` itself doesn't know about the new `dtype`:
.. ipython:: python
try:
np.dtype("category")
except TypeError as e:
print("TypeError: " + str(e))
dtype = pd.Categorical(["a"]).dtype
try:
np.dtype(dtype)
except TypeError as e:
print("TypeError: " + str(e))
Dtype comparisons work:
.. ipython:: python
dtype == np.str_
np.str_ == dtype
To check if a Series contains Categorical data, with pandas 0.16 or later, use
``hasattr(s, 'cat')``:
.. ipython:: python
hasattr(pd.Series(['a'], dtype='category'), 'cat')
hasattr(pd.Series(['a']), 'cat')
Using `numpy` functions on a `Series` of type ``category`` should not work as `Categoricals`
are not numeric data (even in the case that ``.categories`` is numeric).
.. ipython:: python
s = pd.Series(pd.Categorical([1,2,3,4]))
try:
np.sum(s)
#same with np.log(s),..
except TypeError as e:
print("TypeError: " + str(e))
.. note::
If such a function works, please file a bug at https://github.com/pandas-dev/pandas!
dtype in apply
~~~~~~~~~~~~~~
Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get
a `Series` of ``object`` `dtype` (same as getting a row -> getting one element will return a
basic type) and applying along columns will also convert to object.
.. ipython:: python
df = pd.DataFrame({"a":[1,2,3,4],
"b":["a","b","c","d"],
"cats":pd.Categorical([1,2,3,2])})
df.apply(lambda row: type(row["cats"]), axis=1)
df.apply(lambda col: col.dtype, axis=0)
Categorical Index
~~~~~~~~~~~~~~~~~
.. versionadded:: 0.16.1
A new ``CategoricalIndex`` index type is introduced in version 0.16.1. See the
:ref:`advanced indexing docs <indexing.categoricalindex>` for a more detailed
explanation.
Setting the index, will create create a ``CategoricalIndex``
.. ipython:: python
cats = pd.Categorical([1,2,3,4], categories=[4,2,3,1])
strings = ["a","b","c","d"]
values = [4,2,3,1]
df = pd.DataFrame({"strings":strings, "values":values}, index=cats)
df.index
# This now sorts by the categories order
df.sort_index()
In previous versions (<0.16.1) there is no index of type ``category``, so
setting the index to categorical column will convert the categorical data to a
"normal" dtype first and therefore remove any custom ordering of the categories.
Side Effects
~~~~~~~~~~~~
Constructing a `Series` from a `Categorical` will not copy the input `Categorical`. This
means that changes to the `Series` will in most cases change the original `Categorical`:
.. ipython:: python
cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])
s = pd.Series(cat, name="cat")
cat
s.iloc[0:2] = 10
cat
df = pd.DataFrame(s)
df["cat"].cat.categories = [1,2,3,4,5]
cat
Use ``copy=True`` to prevent such a behaviour or simply don't reuse `Categoricals`:
.. ipython:: python
cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])
s = pd.Series(cat, name="cat", copy=True)
cat
s.iloc[0:2] = 10
cat
.. note::
This also happens in some cases when you supply a `numpy` array instead of a `Categorical`:
using an int array (e.g. ``np.array([1,2,3,4])``) will exhibit the same behaviour, while using
a string array (e.g. ``np.array(["a","b","c","a"])``) will not.
|