File: groupby.rst

package info (click to toggle)
pandas 0.19.2-5.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 101,196 kB
  • ctags: 83,045
  • sloc: python: 210,909; ansic: 12,582; sh: 501; makefile: 130
file content (1121 lines) | stat: -rw-r--r-- 33,685 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
.. currentmodule:: pandas
.. _groupby:

.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   np.set_printoptions(precision=4, suppress=True)
   import pandas as pd
   pd.options.display.max_rows = 15
   import matplotlib
   matplotlib.style.use('ggplot')
   import matplotlib.pyplot as plt
   plt.close('all')
   from collections import OrderedDict

*****************************
Group By: split-apply-combine
*****************************

By "group by" we are referring to a process involving one or more of the following
steps

 - **Splitting** the data into groups based on some criteria
 - **Applying** a function to each group independently
 - **Combining** the results into a data structure

Of these, the split step is the most straightforward. In fact, in many
situations you may wish to split the data set into groups and do something with
those groups yourself. In the apply step, we might wish to one of the
following:

 - **Aggregation**: computing a summary statistic (or statistics) about each
   group. Some examples:

    - Compute group sums or means
    - Compute group sizes / counts

 - **Transformation**: perform some group-specific computations and return a
   like-indexed. Some examples:

    - Standardizing data (zscore) within group
    - Filling NAs within groups with a value derived from each group

 - **Filtration**: discard some groups, according to a group-wise computation
   that evaluates True or False. Some examples:

    - Discarding data that belongs to groups with only a few members
    - Filtering out data based on the group sum or mean

 - Some combination of the above: GroupBy will examine the results of the apply
   step and try to return a sensibly combined result if it doesn't fit into
   either of the above two categories

Since the set of object instance methods on pandas data structures are generally
rich and expressive, we often simply want to invoke, say, a DataFrame function
on each group. The name GroupBy should be quite familiar to those who have used
a SQL-based tool (or ``itertools``), in which you can write code like:

.. code-block:: sql

   SELECT Column1, Column2, mean(Column3), sum(Column4)
   FROM SomeTable
   GROUP BY Column1, Column2

We aim to make operations like this natural and easy to express using
pandas. We'll address each area of GroupBy functionality then provide some
non-trivial examples / use cases.

See the :ref:`cookbook<cookbook.grouping>` for some advanced strategies

.. _groupby.split:

Splitting an object into groups
-------------------------------

pandas objects can be split on any of their axes. The abstract definition of
grouping is to provide a mapping of labels to group names. To create a GroupBy
object (more on what the GroupBy object is later), you do the following:

.. code-block:: ipython

   # default is axis=0
   >>> grouped = obj.groupby(key)
   >>> grouped = obj.groupby(key, axis=1)
   >>> grouped = obj.groupby([key1, key2])

The mapping can be specified many different ways:

  - A Python function, to be called on each of the axis labels
  - A list or NumPy array of the same length as the selected axis
  - A dict or Series, providing a ``label -> group name`` mapping
  - For DataFrame objects, a string indicating a column to be used to group. Of
    course ``df.groupby('A')`` is just syntactic sugar for
    ``df.groupby(df['A'])``, but it makes life simpler
  - A list of any of the above things

Collectively we refer to the grouping objects as the **keys**. For example,
consider the following DataFrame:

.. ipython:: python

   df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
                             'foo', 'bar', 'foo', 'foo'],
                      'B' : ['one', 'one', 'two', 'three',
                             'two', 'two', 'one', 'three'],
                      'C' : np.random.randn(8),
                      'D' : np.random.randn(8)})
   df

We could naturally group by either the ``A`` or ``B`` columns or both:

.. ipython:: python

   grouped = df.groupby('A')
   grouped = df.groupby(['A', 'B'])

These will split the DataFrame on its index (rows). We could also split by the
columns:

.. ipython::

    In [4]: def get_letter_type(letter):
       ...:     if letter.lower() in 'aeiou':
       ...:         return 'vowel'
       ...:     else:
       ...:         return 'consonant'
       ...:

    In [5]: grouped = df.groupby(get_letter_type, axis=1)

Starting with 0.8, pandas Index objects now support duplicate values. If a
non-unique index is used as the group key in a groupby operation, all values
for the same index value will be considered to be in one group and thus the
output of aggregation functions will only contain unique index values:

.. ipython:: python

   lst = [1, 2, 3, 1, 2, 3]

   s = pd.Series([1, 2, 3, 10, 20, 30], lst)

   grouped = s.groupby(level=0)

   grouped.first()

   grouped.last()

   grouped.sum()

Note that **no splitting occurs** until it's needed. Creating the GroupBy object
only verifies that you've passed a valid mapping.

.. note::

   Many kinds of complicated data manipulations can be expressed in terms of
   GroupBy operations (though can't be guaranteed to be the most
   efficient). You can get quite creative with the label mapping functions.

.. _groupby.sorting:

GroupBy sorting
~~~~~~~~~~~~~~~~~~~~~~~~~

By default the group keys are sorted during the ``groupby`` operation. You may however pass ``sort=False`` for potential speedups:

.. ipython:: python

   df2 = pd.DataFrame({'X' : ['B', 'B', 'A', 'A'], 'Y' : [1, 2, 3, 4]})
   df2.groupby(['X']).sum()
   df2.groupby(['X'], sort=False).sum()


Note that ``groupby`` will preserve the order in which *observations* are sorted *within* each group.
For example, the groups created by ``groupby()`` below are in the order they appeared in the original ``DataFrame``:

.. ipython:: python

   df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})
   df3.groupby(['X']).get_group('A')

   df3.groupby(['X']).get_group('B')



.. _groupby.attributes:

GroupBy object attributes
~~~~~~~~~~~~~~~~~~~~~~~~~

The ``groups`` attribute is a dict whose keys are the computed unique groups
and corresponding values being the axis labels belonging to each group. In the
above example we have:

.. ipython:: python

   df.groupby('A').groups
   df.groupby(get_letter_type, axis=1).groups

Calling the standard Python ``len`` function on the GroupBy object just returns
the length of the ``groups`` dict, so it is largely just a convenience:

.. ipython:: python

   grouped = df.groupby(['A', 'B'])
   grouped.groups
   len(grouped)


.. _groupby.tabcompletion:

``GroupBy`` will tab complete column names (and other attributes)

.. ipython:: python
   :suppress:

   n = 10
   weight = np.random.normal(166, 20, size=n)
   height = np.random.normal(60, 10, size=n)
   time = pd.date_range('1/1/2000', periods=n)
   gender = np.random.choice(['male', 'female'], size=n)
   df = pd.DataFrame({'height': height, 'weight': weight,
                      'gender': gender}, index=time)

.. ipython:: python

   df
   gb = df.groupby('gender')


.. ipython::

   @verbatim
   In [1]: gb.<TAB>
   gb.agg        gb.boxplot    gb.cummin     gb.describe   gb.filter     gb.get_group  gb.height     gb.last       gb.median     gb.ngroups    gb.plot       gb.rank       gb.std        gb.transform
   gb.aggregate  gb.count      gb.cumprod    gb.dtype      gb.first      gb.groups     gb.hist       gb.max        gb.min        gb.nth        gb.prod       gb.resample   gb.sum        gb.var
   gb.apply      gb.cummax     gb.cumsum     gb.fillna     gb.gender     gb.head       gb.indices    gb.mean       gb.name       gb.ohlc       gb.quantile   gb.size       gb.tail       gb.weight


.. ipython:: python
   :suppress:

   df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
                             'foo', 'bar', 'foo', 'foo'],
                      'B' : ['one', 'one', 'two', 'three',
                             'two', 'two', 'one', 'three'],
                      'C' : np.random.randn(8),
                      'D' : np.random.randn(8)})

.. _groupby.multiindex:

GroupBy with MultiIndex
~~~~~~~~~~~~~~~~~~~~~~~

With :ref:`hierarchically-indexed data <advanced.hierarchical>`, it's quite
natural to group by one of the levels of the hierarchy.

Let's create a Series with a two-level ``MultiIndex``.

.. ipython:: python


   arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
   index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])
   s = pd.Series(np.random.randn(8), index=index)
   s

We can then group by one of the levels in ``s``.

.. ipython:: python

   grouped = s.groupby(level=0)
   grouped.sum()

If the MultiIndex has names specified, these can be passed instead of the level
number:

.. ipython:: python

   s.groupby(level='second').sum()

The aggregation functions such as ``sum`` will take the level parameter
directly. Additionally, the resulting index will be named according to the
chosen level:

.. ipython:: python

   s.sum(level='second')

Also as of v0.6, grouping with multiple levels is supported.

.. ipython:: python
   :suppress:

   arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
             ['doo', 'doo', 'bee', 'bee', 'bop', 'bop', 'bop', 'bop'],
             ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
   tuples = list(zip(*arrays))
   index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second', 'third'])
   s = pd.Series(np.random.randn(8), index=index)

.. ipython:: python

   s
   s.groupby(level=['first', 'second']).sum()

More on the ``sum`` function and aggregation later.

DataFrame column selection in GroupBy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Once you have created the GroupBy object from a DataFrame, for example, you
might want to do something different for each of the columns. Thus, using
``[]`` similar to getting a column from a DataFrame, you can do:

.. ipython:: python

   grouped = df.groupby(['A'])
   grouped_C = grouped['C']
   grouped_D = grouped['D']

This is mainly syntactic sugar for the alternative and much more verbose:

.. ipython:: python

   df['C'].groupby(df['A'])

Additionally this method avoids recomputing the internal grouping information
derived from the passed key.

.. _groupby.iterating:

Iterating through groups
------------------------

With the GroupBy object in hand, iterating through the grouped data is very
natural and functions similarly to ``itertools.groupby``:

.. ipython::

   In [4]: grouped = df.groupby('A')

   In [5]: for name, group in grouped:
      ...:        print(name)
      ...:        print(group)
      ...:

In the case of grouping by multiple keys, the group name will be a tuple:

.. ipython::

   In [5]: for name, group in df.groupby(['A', 'B']):
      ...:        print(name)
      ...:        print(group)
      ...:

It's standard Python-fu but remember you can unpack the tuple in the for loop
statement if you wish: ``for (k1, k2), group in grouped:``.

Selecting a group
-----------------

A single group can be selected using ``GroupBy.get_group()``:

.. ipython:: python

   grouped.get_group('bar')

Or for an object grouped on multiple columns:

.. ipython:: python

   df.groupby(['A', 'B']).get_group(('bar', 'one'))

.. _groupby.aggregate:

Aggregation
-----------

Once the GroupBy object has been created, several methods are available to
perform a computation on the grouped data.

An obvious one is aggregation via the ``aggregate`` or equivalently ``agg`` method:

.. ipython:: python

   grouped = df.groupby('A')
   grouped.aggregate(np.sum)

   grouped = df.groupby(['A', 'B'])
   grouped.aggregate(np.sum)

As you can see, the result of the aggregation will have the group names as the
new index along the grouped axis. In the case of multiple keys, the result is a
:ref:`MultiIndex <advanced.hierarchical>` by default, though this can be
changed by using the ``as_index`` option:

.. ipython:: python

   grouped = df.groupby(['A', 'B'], as_index=False)
   grouped.aggregate(np.sum)

   df.groupby('A', as_index=False).sum()

Note that you could use the ``reset_index`` DataFrame function to achieve the
same result as the column names are stored in the resulting ``MultiIndex``:

.. ipython:: python

   df.groupby(['A', 'B']).sum().reset_index()

Another simple aggregation example is to compute the size of each group.
This is included in GroupBy as the ``size`` method. It returns a Series whose
index are the group names and whose values are the sizes of each group.

.. ipython:: python

   grouped.size()

.. ipython:: python

   grouped.describe()

.. note::

   Aggregation functions **will not** return the groups that you are aggregating over
   if they are named *columns*, when ``as_index=True``, the default. The grouped columns will
   be the **indices** of the returned object.

   Passing ``as_index=False`` **will** return the groups that you are aggregating over, if they are
   named *columns*.

   Aggregating functions are ones that reduce the dimension of the returned objects,
   for example: ``mean, sum, size, count, std, var, sem, describe, first, last, nth, min, max``. This is
   what happens when you do for example ``DataFrame.sum()`` and get back a ``Series``.

   ``nth`` can act as a reducer *or* a filter, see :ref:`here <groupby.nth>`

.. _groupby.aggregate.multifunc:

Applying multiple functions at once
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

With grouped Series you can also pass a list or dict of functions to do
aggregation with, outputting a DataFrame:

.. ipython:: python

   grouped = df.groupby('A')
   grouped['C'].agg([np.sum, np.mean, np.std])

If a dict is passed, the keys will be used to name the columns. Otherwise the
function's name (stored in the function object) will be used.

.. ipython:: python

   grouped['D'].agg({'result1' : np.sum,
                     'result2' : np.mean})

On a grouped DataFrame, you can pass a list of functions to apply to each
column, which produces an aggregated result with a hierarchical index:

.. ipython:: python

   grouped.agg([np.sum, np.mean, np.std])

Passing a dict of functions has different behavior by default, see the next
section.

Applying different functions to DataFrame columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By passing a dict to ``aggregate`` you can apply a different aggregation to the
columns of a DataFrame:

.. ipython:: python

   grouped.agg({'C' : np.sum,
                'D' : lambda x: np.std(x, ddof=1)})

The function names can also be strings. In order for a string to be valid it
must be either implemented on GroupBy or available via :ref:`dispatching
<groupby.dispatch>`:

.. ipython:: python

   grouped.agg({'C' : 'sum', 'D' : 'std'})

.. note::

    If you pass a dict to ``aggregate``, the ordering of the output colums is
    non-deterministic. If you want to be sure the output columns will be in a specific
    order, you can use an ``OrderedDict``.  Compare the output of the following two commands:

.. ipython:: python

   grouped.agg({'D': 'std', 'C': 'mean'})
   grouped.agg(OrderedDict([('D', 'std'), ('C', 'mean')]))

.. _groupby.aggregate.cython:

Cython-optimized aggregation functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some common aggregations, currently only ``sum``, ``mean``, ``std``, and ``sem``, have
optimized Cython implementations:

.. ipython:: python

   df.groupby('A').sum()
   df.groupby(['A', 'B']).mean()

Of course ``sum`` and ``mean`` are implemented on pandas objects, so the above
code would work even without the special versions via dispatching (see below).

.. _groupby.transform:

Transformation
--------------

The ``transform`` method returns an object that is indexed the same (same size)
as the one being grouped. Thus, the passed transform function should return a
result that is the same size as the group chunk. For example, suppose we wished
to standardize the data within each group:

.. ipython:: python

   index = pd.date_range('10/1/1999', periods=1100)
   ts = pd.Series(np.random.normal(0.5, 2, 1100), index)
   ts = ts.rolling(window=100,min_periods=100).mean().dropna()

   ts.head()
   ts.tail()
   key = lambda x: x.year
   zscore = lambda x: (x - x.mean()) / x.std()
   transformed = ts.groupby(key).transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within
each group, which we can easily check:

.. ipython:: python

   # Original Data
   grouped = ts.groupby(key)
   grouped.mean()
   grouped.std()

   # Transformed Data
   grouped_trans = transformed.groupby(key)
   grouped_trans.mean()
   grouped_trans.std()

We can also visually compare the original and transformed data sets.

.. ipython:: python

   compare = pd.DataFrame({'Original': ts, 'Transformed': transformed})

   @savefig groupby_transform_plot.png
   compare.plot()

Another common data transform is to replace missing data with the group mean.

.. ipython:: python
   :suppress:

   cols = ['A', 'B', 'C']
   values = np.random.randn(1000, 3)
   values[np.random.randint(0, 1000, 100), 0] = np.nan
   values[np.random.randint(0, 1000, 50), 1] = np.nan
   values[np.random.randint(0, 1000, 200), 2] = np.nan
   data_df = pd.DataFrame(values, columns=cols)

.. ipython:: python

   data_df

   countries = np.array(['US', 'UK', 'GR', 'JP'])
   key = countries[np.random.randint(0, 4, 1000)]

   grouped = data_df.groupby(key)

   # Non-NA count in each group
   grouped.count()

   f = lambda x: x.fillna(x.mean())

   transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data
and that the transformed data contains no NAs.

.. ipython:: python

   grouped_trans = transformed.groupby(key)

   grouped.mean() # original group means
   grouped_trans.mean() # transformation did not change group means

   grouped.count() # original has some missing data points
   grouped_trans.count() # counts after transformation
   grouped_trans.size() # Verify non-NA count equals group size

.. note::

   Some functions when applied to a groupby object will automatically transform the input, returning
   an object of the same shape as the original. Passing ``as_index=False`` will not affect these transformation methods.

   For example: ``fillna, ffill, bfill, shift``.

   .. ipython:: python

      grouped.ffill()


.. _groupby.transform.window_resample:

New syntax to window and resample operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 0.18.1

Working with the resample, expanding or rolling operations on the groupby
level used to require the application of helper functions. However,
now it is possible to use ``resample()``, ``expanding()`` and
``rolling()`` as methods on groupbys.

The example below will apply the ``rolling()`` method on the samples of
the column B based on the groups of column A.

.. ipython:: python

   df_re = pd.DataFrame({'A': [1] * 10 + [5] * 10,
                         'B': np.arange(20)})
   df_re

   df_re.groupby('A').rolling(4).B.mean()


The ``expanding()`` method will accumulate a given operation
(``sum()`` in the example) for all the members of each particular
group.

.. ipython:: python

   df_re.groupby('A').expanding().sum()


Suppose you want to use the ``resample()`` method to get a daily
frequency in each group of your dataframe and wish to complete the
missing values with the ``ffill()`` method.

.. ipython:: python

   df_re = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
                                 periods=4,
                         freq='W'),
                        'group': [1, 1, 2, 2],
                        'val': [5, 6, 7, 8]}).set_index('date')
   df_re

   df_re.groupby('group').resample('1D').ffill()

.. _groupby.filter:

Filtration
----------

.. versionadded:: 0.12

The ``filter`` method returns a subset of the original object. Suppose we
want to take only elements that belong to groups with a group sum greater
than 2.

.. ipython:: python

   sf = pd.Series([1, 1, 2, 3, 3, 3])
   sf.groupby(sf).filter(lambda x: x.sum() > 2)

The argument of ``filter`` must be a function that, applied to the group as a
whole, returns ``True`` or ``False``.

Another useful operation is filtering out elements that belong to groups
with only a couple members.

.. ipython:: python

   dff = pd.DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})
   dff.groupby('B').filter(lambda x: len(x) > 2)

Alternatively, instead of dropping the offending groups, we can return a
like-indexed objects where the groups that do not pass the filter are filled
with NaNs.

.. ipython:: python

   dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)

For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion.

.. ipython:: python

   dff['C'] = np.arange(8)
   dff.groupby('B').filter(lambda x: len(x['C']) > 2)

.. note::

   Some functions when applied to a groupby object will act as a **filter** on the input, returning
   a reduced shape of the original (and potentially eliminating groups), but with the index unchanged.
   Passing ``as_index=False`` will not affect these transformation methods.

   For example: ``head, tail``.

   .. ipython:: python

      dff.groupby('B').head(2)


.. _groupby.dispatch:

Dispatching to instance methods
-------------------------------

When doing an aggregation or transformation, you might just want to call an
instance method on each data group. This is pretty easy to do by passing lambda
functions:

.. ipython:: python

   grouped = df.groupby('A')
   grouped.agg(lambda x: x.std())

But, it's rather verbose and can be untidy if you need to pass additional
arguments. Using a bit of metaprogramming cleverness, GroupBy now has the
ability to "dispatch" method calls to the groups:

.. ipython:: python

   grouped.std()

What is actually happening here is that a function wrapper is being
generated. When invoked, it takes any passed arguments and invokes the function
with any arguments on each group (in the above example, the ``std``
function). The results are then combined together much in the style of ``agg``
and ``transform`` (it actually uses ``apply`` to infer the gluing, documented
next). This enables some operations to be carried out rather succinctly:

.. ipython:: python

   tsdf = pd.DataFrame(np.random.randn(1000, 3),
                       index=pd.date_range('1/1/2000', periods=1000),
                       columns=['A', 'B', 'C'])
   tsdf.ix[::2] = np.nan
   grouped = tsdf.groupby(lambda x: x.year)
   grouped.fillna(method='pad')

In this example, we chopped the collection of time series into yearly chunks
then independently called :ref:`fillna <missing_data.fillna>` on the
groups.

.. versionadded:: 0.14.1

The ``nlargest`` and ``nsmallest`` methods work on ``Series`` style groupbys:

.. ipython:: python

   s = pd.Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
   g = pd.Series(list('abababab'))
   gb = s.groupby(g)
   gb.nlargest(3)
   gb.nsmallest(3)

.. _groupby.apply:

Flexible ``apply``
------------------

Some operations on the grouped data might not fit into either the aggregate or
transform categories. Or, you may simply want GroupBy to infer how to combine
the results. For these, use the ``apply`` function, which can be substituted
for both ``aggregate`` and ``transform`` in many standard use cases. However,
``apply`` can handle some exceptional use cases, for example:

.. ipython:: python

   df
   grouped = df.groupby('A')

   # could also just call .describe()
   grouped['C'].apply(lambda x: x.describe())

The dimension of the returned result can also change:

.. ipython::

    In [8]: grouped = df.groupby('A')['C']

    In [10]: def f(group):
       ....:     return pd.DataFrame({'original' : group,
       ....:                          'demeaned' : group - group.mean()})
       ....:

    In [11]: grouped.apply(f)

``apply`` on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

.. ipython:: python

    def f(x):
      return pd.Series([ x, x**2 ], index = ['x', 'x^2'])
    s = pd.Series(np.random.rand(5))
    s
    s.apply(f)


.. note::

   ``apply`` can act as a reducer, transformer, *or* filter function, depending on exactly what is passed to it.
   So depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in
   the output as well as set the indices.

.. warning::

    In the current implementation apply calls func twice on the
    first group to decide whether it can take a fast or slow code
    path. This can lead to unexpected behavior if func has
    side-effects, as they will take effect twice for the first
    group.

    .. ipython:: python

        d = pd.DataFrame({"a":["x", "y"], "b":[1,2]})
        def identity(df):
            print df
            return df

        d.groupby("a").apply(identity)


Other useful features
---------------------

Automatic exclusion of "nuisance" columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Again consider the example DataFrame we've been looking at:

.. ipython:: python

   df

Suppose we wish to compute the standard deviation grouped by the ``A``
column. There is a slight problem, namely that we don't care about the data in
column ``B``. We refer to this as a "nuisance" column. If the passed
aggregation function can't be applied to some columns, the troublesome columns
will be (silently) dropped. Thus, this does not pose any problems:

.. ipython:: python

   df.groupby('A').std()

.. _groupby.missing:

NA and NaT group handling
~~~~~~~~~~~~~~~~~~~~~~~~~

If there are any NaN or NaT values in the grouping key, these will be automatically
excluded. So there will never be an "NA group" or "NaT group". This was not the case in older
versions of pandas, but users were generally discarding the NA group anyway
(and supporting it was an implementation headache).

Grouping with ordered factors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Categorical variables represented as instance of pandas's ``Categorical`` class
can be used as group keys. If so, the order of the levels will be preserved:

.. ipython:: python

   data = pd.Series(np.random.randn(100))

   factor = pd.qcut(data, [0, .25, .5, .75, 1.])

   data.groupby(factor).mean()

.. _groupby.specify:

Grouping with a Grouper specification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You may need to specify a bit more data to properly group. You can
use the ``pd.Grouper`` to provide this local control.

.. ipython:: python

   import datetime

   df = pd.DataFrame({
            'Branch' : 'A A A A A A A B'.split(),
            'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
            'Quantity': [1,3,5,1,8,1,9,3],
            'Date' : [
                datetime.datetime(2013,1,1,13,0),
                datetime.datetime(2013,1,1,13,5),
                datetime.datetime(2013,10,1,20,0),
                datetime.datetime(2013,10,2,10,0),
                datetime.datetime(2013,10,1,20,0),
                datetime.datetime(2013,10,2,10,0),
                datetime.datetime(2013,12,2,12,0),
                datetime.datetime(2013,12,2,14,0),
                ]
            })

   df

Groupby a specific column with the desired frequency. This is like resampling.

.. ipython:: python

   df.groupby([pd.Grouper(freq='1M',key='Date'),'Buyer']).sum()

You have an ambiguous specification in that you have a named index and a column
that could be potential groupers.

.. ipython:: python

   df = df.set_index('Date')
   df['Date'] = df.index + pd.offsets.MonthEnd(2)
   df.groupby([pd.Grouper(freq='6M',key='Date'),'Buyer']).sum()

   df.groupby([pd.Grouper(freq='6M',level='Date'),'Buyer']).sum()


Taking the first rows of each group
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Just like for a DataFrame or Series you can call head and tail on a groupby:

.. ipython:: python

   df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
   df

   g = df.groupby('A')
   g.head(1)

   g.tail(1)

This shows the first or last n rows from each group.

.. warning::

   Before 0.14.0 this was implemented with a fall-through apply,
   so the result would incorrectly respect the as_index flag:

   .. code-block:: python

       >>> g.head(1):  # was equivalent to g.apply(lambda x: x.head(1))
             A  B
        A
        1 0  1  2
        5 2  5  6

.. _groupby.nth:

Taking the nth row of each group
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To select from a DataFrame or Series the nth item, use the nth method. This is a reduction method, and will return a single row (or no row) per group if you pass an int for n:

.. ipython:: python

   df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
   g = df.groupby('A')

   g.nth(0)
   g.nth(-1)
   g.nth(1)

If you want to select the nth not-null item, use the ``dropna`` kwarg. For a DataFrame this should be either ``'any'`` or ``'all'`` just like you would pass to dropna, for a Series this just needs to be truthy.

.. ipython:: python

   # nth(0) is the same as g.first()
   g.nth(0, dropna='any')
   g.first()

   # nth(-1) is the same as g.last()
   g.nth(-1, dropna='any')  # NaNs denote group exhausted when using dropna
   g.last()

   g.B.nth(0, dropna=True)

As with other methods, passing ``as_index=False``, will achieve a filtration, which returns the grouped row.

.. ipython:: python

   df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
   g = df.groupby('A',as_index=False)

   g.nth(0)
   g.nth(-1)

You can also select multiple rows from each group by specifying multiple nth values as a list of ints.

.. ipython:: python

   business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B')
   df = pd.DataFrame(1, index=business_dates, columns=['a', 'b'])
   # get the first, 4th, and last date index for each month
   df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])

Enumerate group items
~~~~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.13.0

To see the order in which each row appears within its group, use the
``cumcount`` method:

.. ipython:: python

   df = pd.DataFrame(list('aaabba'), columns=['A'])
   df

   df.groupby('A').cumcount()

   df.groupby('A').cumcount(ascending=False)  # kwarg only

Plotting
~~~~~~~~

Groupby also works with some plotting methods.  For example, suppose we
suspect that some features in a DataFrame may differ by group, in this case,
the values in column 1 where the group is "B" are 3 higher on average.

.. ipython:: python

   np.random.seed(1234)
   df = pd.DataFrame(np.random.randn(50, 2))
   df['g'] = np.random.choice(['A', 'B'], size=50)
   df.loc[df['g'] == 'B', 1] += 3

We can easily visualize this with a boxplot:

.. ipython:: python
   :okwarning:

   @savefig groupby_boxplot.png
   df.groupby('g').boxplot()

The result of calling ``boxplot`` is a dictionary whose keys are the values
of our grouping column ``g`` ("A" and "B"). The values of the resulting dictionary
can be controlled by the ``return_type`` keyword of ``boxplot``.
See the :ref:`visualization documentation<visualization.box>` for more.

.. warning::

  For historical reasons, ``df.groupby("g").boxplot()`` is not equivalent
  to ``df.boxplot(by="g")``. See :ref:`here<visualization.box.return>` for
  an explanation.

Examples
--------

Regrouping by factor
~~~~~~~~~~~~~~~~~~~~

Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.

.. ipython:: python

   df = pd.DataFrame({'a':[1,0,0], 'b':[0,1,0], 'c':[1,0,0], 'd':[2,3,4]})
   df
   df.groupby(df.sum(), axis=1).sum()

Groupby by Indexer to 'resample' data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Resampling produces new hypothetical samples(resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples.

In order to resample to work on indices that are non-datetimelike , the following procedure can be utilized.

In the following examples, **df.index // 5** returns a binary array which is used to determine what get's selected for the groupby operation.

.. note:: The below example shows how we can downsample by consolidation of samples into fewer samples. Here by using **df.index // 5**, we are aggregating the samples in bins. By applying **std()** function, we aggregate the information contained in many samples into a small subset of values which is their standard deviation thereby reducing the number of samples.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10,2))
   df
   df.index // 5
   df.groupby(df.index // 5).std()

Returning a Series to propagate names
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Group DataFrame columns, compute a set of metrics and return a named Series.
The Series name is used as the name for the column index. This is especially
useful in conjunction with reshaping operations such as stacking in which the
column index name will be used as the name of the inserted column:

.. ipython:: python

   df = pd.DataFrame({
            'a':  [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
            'b':  [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
            'c':  [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
            'd':  [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
            })

   def compute_metrics(x):
       result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()}
       return pd.Series(result, name='metrics')

   result = df.groupby('a').apply(compute_metrics)

   result

   result.stack()