File: merging.rst

package info (click to toggle)
pandas 0.19.2-5.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 101,196 kB
  • ctags: 83,045
  • sloc: python: 210,909; ansic: 12,582; sh: 501; makefile: 130
file content (1212 lines) | stat: -rw-r--r-- 38,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
.. currentmodule:: pandas
.. _merging:

.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   import pandas as pd
   pd.options.display.max_rows=15
   randn = np.random.randn
   np.set_printoptions(precision=4, suppress=True)

   import matplotlib.pyplot as plt
   plt.close('all')
   import pandas.util.doctools as doctools
   p = doctools.TablePlotter()


****************************
Merge, join, and concatenate
****************************

pandas provides various facilities for easily combining together Series,
DataFrame, and Panel objects with various kinds of set logic for the indexes
and relational algebra functionality in the case of join / merge-type
operations.

.. _merging.concat:

Concatenating objects
---------------------

The ``concat`` function (in the main pandas namespace) does all of the heavy
lifting of performing concatenation operations along an axis while performing
optional set logic (union or intersection) of the indexes (if any) on the other
axes. Note that I say "if any" because there is only a single possible axis of
concatenation for Series.

Before diving into all of the details of ``concat`` and what it can do, here is
a simple example:

.. ipython:: python

   df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                       'B': ['B0', 'B1', 'B2', 'B3'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']},
                       index=[0, 1, 2, 3])

   df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                       'B': ['B4', 'B5', 'B6', 'B7'],
                       'C': ['C4', 'C5', 'C6', 'C7'],
                       'D': ['D4', 'D5', 'D6', 'D7']},
                        index=[4, 5, 6, 7])

   df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
                       'B': ['B8', 'B9', 'B10', 'B11'],
                       'C': ['C8', 'C9', 'C10', 'C11'],
                       'D': ['D8', 'D9', 'D10', 'D11']},
                       index=[8, 9, 10, 11])

   frames = [df1, df2, df3]
   result = pd.concat(frames)

.. ipython:: python
   :suppress:

   @savefig merging_concat_basic.png
   p.plot(frames, result,
          labels=['df1', 'df2', 'df3'], vertical=True);
   plt.close('all');

Like its sibling function on ndarrays, ``numpy.concatenate``, ``pandas.concat``
takes a list or dict of homogeneously-typed objects and concatenates them with
some configurable handling of "what to do with the other axes":

::

    pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
              keys=None, levels=None, names=None, verify_integrity=False,
              copy=True)

- ``objs`` : a sequence or mapping of Series, DataFrame, or Panel objects. If a
  dict is passed, the sorted keys will be used as the `keys` argument, unless
  it is passed, in which case the values will be selected (see below). Any None
  objects will be dropped silently unless they are all None in which case a
  ValueError will be raised.
- ``axis`` : {0, 1, ...}, default 0. The axis to concatenate along.
- ``join`` : {'inner', 'outer'}, default 'outer'. How to handle indexes on
  other axis(es). Outer for union and inner for intersection.
- ``ignore_index`` : boolean, default False. If True, do not use the index
  values on the concatenation axis. The resulting axis will be labeled 0, ...,
  n - 1. This is useful if you are concatenating objects where the
  concatenation axis does not have meaningful indexing information. Note
  the index values on the other axes are still respected in the join.
- ``join_axes`` : list of Index objects. Specific indexes to use for the other
  n - 1 axes instead of performing inner/outer set logic.
- ``keys`` : sequence, default None. Construct hierarchical index using the
  passed keys as the outermost level. If multiple levels passed, should
  contain tuples.
- ``levels`` : list of sequences, default None. Specific levels (unique values)
  to use for constructing a MultiIndex. Otherwise they will be inferred from the
  keys.
- ``names`` : list, default None. Names for the levels in the resulting
  hierarchical index.
- ``verify_integrity`` : boolean, default False. Check whether the new
  concatenated axis contains duplicates. This can be very expensive relative
  to the actual data concatenation.
- ``copy`` : boolean, default True. If False, do not copy data unnecessarily.

Without a little bit of context and example many of these arguments don't make
much sense. Let's take the above example. Suppose we wanted to associate
specific keys with each of the pieces of the chopped up DataFrame. We can do
this using the ``keys`` argument:

.. ipython:: python

   result = pd.concat(frames, keys=['x', 'y', 'z'])

.. ipython:: python
   :suppress:

   @savefig merging_concat_keys.png
   p.plot(frames, result,
          labels=['df1', 'df2', 'df3'], vertical=True)
   plt.close('all');

As you can see (if you've read the rest of the documentation), the resulting
object's index has a :ref:`hierarchical index <advanced.hierarchical>`. This
means that we can now do stuff like select out each chunk by key:

.. ipython:: python

   result.ix['y']

It's not a stretch to see how this can be very useful. More detail on this
functionality below.

.. note::
   It is worth noting however, that ``concat`` (and therefore ``append``) makes
   a full copy of the data, and that constantly reusing this function can
   create a significant performance hit. If you need to use the operation over
   several datasets, use a list comprehension.

::

   frames = [ process_your_file(f) for f in files ]
   result = pd.concat(frames)


Set logic on the other axes
~~~~~~~~~~~~~~~~~~~~~~~~~~~

When gluing together multiple DataFrames (or Panels or...), for example, you
have a choice of how to handle the other axes (other than the one being
concatenated). This can be done in three ways:

- Take the (sorted) union of them all, ``join='outer'``. This is the default
  option as it results in zero information loss.
- Take the intersection, ``join='inner'``.
- Use a specific index (in the case of DataFrame) or indexes (in the case of
  Panel or future higher dimensional objects), i.e. the ``join_axes`` argument

Here is a example of each of these methods. First, the default ``join='outer'``
behavior:

.. ipython:: python

   df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
                    'D': ['D2', 'D3', 'D6', 'D7'],
                    'F': ['F2', 'F3', 'F6', 'F7']},
                   index=[2, 3, 6, 7])
   result = pd.concat([df1, df4], axis=1)


.. ipython:: python
   :suppress:

   @savefig merging_concat_axis1.png
   p.plot([df1, df4], result,
          labels=['df1', 'df4'], vertical=False);
   plt.close('all');

Note that the row indexes have been unioned and sorted. Here is the same thing
with ``join='inner'``:

.. ipython:: python

   result = pd.concat([df1, df4], axis=1, join='inner')

.. ipython:: python
   :suppress:

   @savefig merging_concat_axis1_inner.png
   p.plot([df1, df4], result,
          labels=['df1', 'df4'], vertical=False);
   plt.close('all');

Lastly, suppose we just wanted to reuse the *exact index* from the original
DataFrame:

.. ipython:: python

   result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

.. ipython:: python
   :suppress:

   @savefig merging_concat_axis1_join_axes.png
   p.plot([df1, df4], result,
          labels=['df1', 'df4'], vertical=False);
   plt.close('all');

.. _merging.concatenation:

Concatenating using ``append``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A useful shortcut to ``concat`` are the ``append`` instance methods on Series
and DataFrame. These methods actually predated ``concat``. They concatenate
along ``axis=0``, namely the index:

.. ipython:: python

   result = df1.append(df2)

.. ipython:: python
   :suppress:

   @savefig merging_append1.png
   p.plot([df1, df2], result,
          labels=['df1', 'df2'], vertical=True);
   plt.close('all');

In the case of DataFrame, the indexes must be disjoint but the columns do not
need to be:

.. ipython:: python

   result = df1.append(df4)

.. ipython:: python
   :suppress:

   @savefig merging_append2.png
   p.plot([df1, df4], result,
          labels=['df1', 'df4'], vertical=True);
   plt.close('all');

``append`` may take multiple objects to concatenate:

.. ipython:: python

   result = df1.append([df2, df3])

.. ipython:: python
   :suppress:

   @savefig merging_append3.png
   p.plot([df1, df2, df3], result,
          labels=['df1', 'df2', 'df3'], vertical=True);
   plt.close('all');

.. note::

   Unlike `list.append` method, which appends to the original list and
   returns nothing, ``append`` here **does not** modify ``df1`` and
   returns its copy with ``df2`` appended.

.. _merging.ignore_index:

Ignoring indexes on the concatenation axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For DataFrames which don't have a meaningful index, you may wish to append them
and ignore the fact that they may have overlapping indexes:

To do this, use the ``ignore_index`` argument:

.. ipython:: python

   result = pd.concat([df1, df4], ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_concat_ignore_index.png
   p.plot([df1, df4], result,
          labels=['df1', 'df4'], vertical=True);
   plt.close('all');

This is also a valid argument to ``DataFrame.append``:

.. ipython:: python

   result = df1.append(df4, ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_append_ignore_index.png
   p.plot([df1, df4], result,
          labels=['df1', 'df4'], vertical=True);
   plt.close('all');

.. _merging.mixed_ndims:

Concatenating with mixed ndims
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can concatenate a mix of Series and DataFrames. The
Series will be transformed to DataFrames with the column name as
the name of the Series.

.. ipython:: python

   s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')
   result = pd.concat([df1, s1], axis=1)

.. ipython:: python
   :suppress:

   @savefig merging_concat_mixed_ndim.png
   p.plot([df1, s1], result,
          labels=['df1', 's1'], vertical=False);
   plt.close('all');

If unnamed Series are passed they will be numbered consecutively.

.. ipython:: python

   s2 = pd.Series(['_0', '_1', '_2', '_3'])
   result = pd.concat([df1, s2, s2, s2], axis=1)

.. ipython:: python
   :suppress:

   @savefig merging_concat_unnamed_series.png
   p.plot([df1, s2], result,
          labels=['df1', 's2'], vertical=False);
   plt.close('all');

Passing ``ignore_index=True`` will drop all name references.

.. ipython:: python

   result = pd.concat([df1, s1], axis=1, ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_concat_series_ignore_index.png
   p.plot([df1, s1], result,
          labels=['df1', 's1'], vertical=False);
   plt.close('all');

More concatenating with group keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A fairly common use of the ``keys`` argument is to override the column names when creating a new DataFrame based on existing Series.
Notice how the default behaviour consists on letting the resulting DataFrame inherits the parent Series' name, when these existed.

.. ipython:: python

   s3 = pd.Series([0, 1, 2, 3], name='foo')
   s4 = pd.Series([0, 1, 2, 3])
   s5 = pd.Series([0, 1, 4, 5])

   pd.concat([s3, s4, s5], axis=1)

Through the ``keys`` argument we can override the existing column names.

.. ipython:: python

   pd.concat([s3, s4, s5], axis=1, keys=['red','blue','yellow'])

Let's consider now a variation on the very first example presented:

.. ipython:: python

   result = pd.concat(frames, keys=['x', 'y', 'z'])

.. ipython:: python
   :suppress:

   @savefig merging_concat_group_keys2.png
   p.plot(frames, result,
          labels=['df1', 'df2', 'df3'], vertical=True);
   plt.close('all');

You can also pass a dict to ``concat`` in which case the dict keys will be used
for the ``keys`` argument (unless other keys are specified):

.. ipython:: python

   pieces = {'x': df1, 'y': df2, 'z': df3}
   result = pd.concat(pieces)

.. ipython:: python
   :suppress:

   @savefig merging_concat_dict.png
   p.plot([df1, df2, df3], result,
          labels=['df1', 'df2', 'df3'], vertical=True);
   plt.close('all');

.. ipython:: python

   result = pd.concat(pieces, keys=['z', 'y'])

.. ipython:: python
   :suppress:

   @savefig merging_concat_dict_keys.png
   p.plot([df1, df2, df3], result,
          labels=['df1', 'df2', 'df3'], vertical=True);
   plt.close('all');

The MultiIndex created has levels that are constructed from the passed keys and
the index of the DataFrame pieces:

.. ipython:: python

   result.index.levels

If you wish to specify other levels (as will occasionally be the case), you can
do so using the ``levels`` argument:

.. ipython:: python

   result = pd.concat(pieces, keys=['x', 'y', 'z'],
                   levels=[['z', 'y', 'x', 'w']],
                   names=['group_key'])

.. ipython:: python
   :suppress:

   @savefig merging_concat_dict_keys_names.png
   p.plot([df1, df2, df3], result,
          labels=['df1', 'df2', 'df3'], vertical=True);
   plt.close('all');

.. ipython:: python

   result.index.levels

Yes, this is fairly esoteric, but is actually necessary for implementing things
like GroupBy where the order of a categorical variable is meaningful.

.. _merging.append.row:

Appending rows to a DataFrame
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While not especially efficient (since a new object must be created), you can
append a single row to a DataFrame by passing a Series or dict to ``append``,
which returns a new DataFrame as above.

.. ipython:: python

   s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
   result = df1.append(s2, ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_append_series_as_row.png
   p.plot([df1, s2], result,
          labels=['df1', 's2'], vertical=True);
   plt.close('all');

You should use ``ignore_index`` with this method to instruct DataFrame to
discard its index. If you wish to preserve the index, you should construct an
appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

.. ipython:: python

   dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
            {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]
   result = df1.append(dicts, ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_append_dits.png
   p.plot([df1, pd.DataFrame(dicts)], result,
          labels=['df1', 'dicts'], vertical=True);
   plt.close('all');

.. _merging.join:

Database-style DataFrame joining/merging
----------------------------------------

pandas has full-featured, **high performance** in-memory join operations
idiomatically very similar to relational databases like SQL. These methods
perform significantly better (in some cases well over an order of magnitude
better) than other open source implementations (like ``base::merge.data.frame``
in R). The reason for this is careful algorithmic design and internal layout of
the data in DataFrame.

See the :ref:`cookbook<cookbook.merge>` for some advanced strategies.

Users who are familiar with SQL but new to pandas might be interested in a
:ref:`comparison with SQL<compare_with_sql.join>`.

pandas provides a single function, ``merge``, as the entry point for all
standard database join operations between DataFrame objects:

::

    pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
             left_index=False, right_index=False, sort=True,
             suffixes=('_x', '_y'), copy=True, indicator=False)

- ``left``: A DataFrame object
- ``right``: Another DataFrame object
- ``on``: Columns (names) to join on. Must be found in both the left and
  right DataFrame objects. If not passed and ``left_index`` and
  ``right_index`` are ``False``, the intersection of the columns in the
  DataFrames will be inferred to be the join keys
- ``left_on``: Columns from the left DataFrame to use as keys. Can either be
  column names or arrays with length equal to the length of the DataFrame
- ``right_on``: Columns from the right DataFrame to use as keys. Can either be
  column names or arrays with length equal to the length of the DataFrame
- ``left_index``: If ``True``, use the index (row labels) from the left
  DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex
  (hierarchical), the number of levels must match the number of join keys
  from the right DataFrame
- ``right_index``: Same usage as ``left_index`` for the right DataFrame
- ``how``: One of ``'left'``, ``'right'``, ``'outer'``, ``'inner'``. Defaults
  to ``inner``. See below for more detailed description of each method
- ``sort``: Sort the result DataFrame by the join keys in lexicographical
  order. Defaults to ``True``, setting to ``False`` will improve performance
  substantially in many cases
- ``suffixes``: A tuple of string suffixes to apply to overlapping
  columns. Defaults to ``('_x', '_y')``.
- ``copy``: Always copy data (default ``True``) from the passed DataFrame
  objects, even when reindexing is not necessary. Cannot be avoided in many
  cases but may improve performance / memory usage. The cases where copying
  can be avoided are somewhat pathological but this option is provided
  nonetheless.
- ``indicator``: Add a column to the output DataFrame called ``_merge``
  with information on the source of each row. ``_merge`` is Categorical-type
  and takes on a value of ``left_only`` for observations whose merge key
  only appears in ``'left'`` DataFrame, ``right_only`` for observations whose
  merge key only appears in ``'right'`` DataFrame, and ``both`` if the
  observation's merge key is found in both.

  .. versionadded:: 0.17.0

The return type will be the same as ``left``. If ``left`` is a ``DataFrame``
and ``right`` is a subclass of DataFrame, the return type will still be
``DataFrame``.

``merge`` is a function in the pandas namespace, and it is also available as a
DataFrame instance method, with the calling DataFrame being implicitly
considered the left object in the join.

The related ``DataFrame.join`` method, uses ``merge`` internally for the
index-on-index (by default) and column(s)-on-index join. If you are joining on
index only, you may wish to use ``DataFrame.join`` to save yourself some typing.

Brief primer on merge methods (relational algebra)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Experienced users of relational databases like SQL will be familiar with the
terminology used to describe join operations between two SQL-table like
structures (DataFrame objects). There are several cases to consider which are
very important to understand:

- **one-to-one** joins: for example when joining two DataFrame objects on
  their indexes (which must contain unique values)
- **many-to-one** joins: for example when joining an index (unique) to one or
  more columns in a DataFrame
- **many-to-many** joins: joining columns on columns.

.. note::

   When joining columns on columns (potentially a many-to-many join), any
   indexes on the passed DataFrame objects **will be discarded**.


It is worth spending some time understanding the result of the **many-to-many**
join case. In SQL / standard relational algebra, if a key combination appears
more than once in both tables, the resulting table will have the **Cartesian
product** of the associated data. Here is a very basic example with one unique
key combination:

.. ipython:: python

   left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

   right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                         'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']})
   result = pd.merge(left, right, on='key')

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

Here is a more complicated example with multiple join keys:

.. ipython:: python

   left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

   right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                         'key2': ['K0', 'K0', 'K0', 'K0'],
                         'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']})

   result = pd.merge(left, right, on=['key1', 'key2'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_multiple.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

The ``how`` argument to ``merge`` specifies how to determine which keys are to
be included in the resulting table. If a key combination **does not appear** in
either the left or right tables, the values in the joined table will be
``NA``. Here is a summary of the ``how`` options and their SQL equivalent names:

.. csv-table::
    :header: "Merge method", "SQL Join Name", "Description"
    :widths: 20, 20, 60

    ``left``, ``LEFT OUTER JOIN``, Use keys from left frame only
    ``right``, ``RIGHT OUTER JOIN``, Use keys from right frame only
    ``outer``, ``FULL OUTER JOIN``, Use union of keys from both frames
    ``inner``, ``INNER JOIN``, Use intersection of keys from both frames

.. ipython:: python

   result = pd.merge(left, right, how='left', on=['key1', 'key2'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_left.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = pd.merge(left, right, how='right', on=['key1', 'key2'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_right.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);

.. ipython:: python

   result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_outer.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = pd.merge(left, right, how='inner', on=['key1', 'key2'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_inner.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. _merging.indicator:

The merge indicator
~~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.17.0

``merge`` now accepts the argument ``indicator``. If ``True``, a Categorical-type column called ``_merge`` will be added to the output object that takes on values:

  ===================================   ================
  Observation Origin                    ``_merge`` value
  ===================================   ================
  Merge key only in ``'left'`` frame    ``left_only``
  Merge key only in ``'right'`` frame   ``right_only``
  Merge key in both frames              ``both``
  ===================================   ================

.. ipython:: python

   df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})
   df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})
   pd.merge(df1, df2, on='col1', how='outer', indicator=True)

The ``indicator`` argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column.

.. ipython:: python

   pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')


.. _merging.join.index:

Joining on index
~~~~~~~~~~~~~~~~

``DataFrame.join`` is a convenient method for combining the columns of two
potentially differently-indexed DataFrames into a single result DataFrame. Here
is a very basic example:

.. ipython:: python

   left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2']},
                        index=['K0', 'K1', 'K2'])

   right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                         'D': ['D0', 'D2', 'D3']},
                         index=['K0', 'K2', 'K3'])

   result = left.join(right)

.. ipython:: python
   :suppress:

   @savefig merging_join.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = left.join(right, how='outer')

.. ipython:: python
   :suppress:

   @savefig merging_join_outer.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = left.join(right, how='inner')

.. ipython:: python
   :suppress:

   @savefig merging_join_inner.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

The data alignment here is on the indexes (row labels). This same behavior can
be achieved using ``merge`` plus additional arguments instructing it to use the
indexes:

.. ipython:: python

   result = pd.merge(left, right, left_index=True, right_index=True, how='outer')

.. ipython:: python
   :suppress:

   @savefig merging_merge_index_outer.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = pd.merge(left, right, left_index=True, right_index=True, how='inner');

.. ipython:: python
   :suppress:

   @savefig merging_merge_index_inner.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

Joining key columns on an index
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``join`` takes an optional ``on`` argument which may be a column or multiple
column names, which specifies that the passed DataFrame is to be aligned on
that column in the DataFrame. These two function calls are completely
equivalent:

::

    left.join(right, on=key_or_keys)
    pd.merge(left, right, left_on=key_or_keys, right_index=True,
          how='left', sort=False)

Obviously you can choose whichever form you find more convenient. For
many-to-one joins (where one of the DataFrame's is already indexed by the join
key), using ``join`` may be more convenient. Here is a simple example:

.. ipython:: python

   left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3'],
                        'key': ['K0', 'K1', 'K0', 'K1']})

   right = pd.DataFrame({'C': ['C0', 'C1'],
                         'D': ['D0', 'D1']},
                         index=['K0', 'K1'])

   result = left.join(right, on='key')

.. ipython:: python
   :suppress:

   @savefig merging_join_key_columns.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = pd.merge(left, right, left_on='key', right_index=True,
                     how='left', sort=False);

.. ipython:: python
   :suppress:

   @savefig merging_merge_key_columns.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. _merging.multikey_join:

To join on multiple keys, the passed DataFrame must have a ``MultiIndex``:

.. ipython:: python

   left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3'],
                        'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1']})

   index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'),
                                     ('K2', 'K0'), ('K2', 'K1')])
   right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']},
                     index=index)

Now this can be joined by passing the two key column names:

.. ipython:: python

   result = left.join(right, on=['key1', 'key2'])

.. ipython:: python
   :suppress:

   @savefig merging_join_multikeys.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. _merging.df_inner_join:

The default for ``DataFrame.join`` is to perform a left join (essentially a
"VLOOKUP" operation, for Excel users), which uses only the keys found in the
calling DataFrame. Other join types, for example inner join, can be just as
easily performed:

.. ipython:: python

   result = left.join(right, on=['key1', 'key2'], how='inner')

.. ipython:: python
   :suppress:

   @savefig merging_join_multikeys_inner.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

As you can see, this drops any rows where there was no match.

.. _merging.join_on_mi:

Joining a single Index to a Multi-index
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.14.0

You can join a singly-indexed ``DataFrame`` with a level of a multi-indexed ``DataFrame``.
The level will match on the name of the index of the singly-indexed frame against
a level name of the multi-indexed frame.

..  ipython:: python

   left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2']},
                        index=pd.Index(['K0', 'K1', 'K2'], name='key'))

   index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
                                     ('K2', 'Y2'), ('K2', 'Y3')],
                                      names=['key', 'Y'])
   right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']},
                         index=index)

   result = left.join(right, how='inner')

.. ipython:: python
   :suppress:

   @savefig merging_join_multiindex_inner.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

This is equivalent but less verbose and more memory efficient / faster than this.

..  ipython:: python

    result = pd.merge(left.reset_index(), right.reset_index(),
          on=['key'], how='inner').set_index(['key','Y'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_multiindex_alternative.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

Joining with two multi-indexes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is not Implemented via ``join`` at-the-moment, however it can be done using the following.

.. ipython:: python

   index = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
                                      ('K1', 'X2')],
                                       names=['key', 'X'])
   left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2']},
                         index=index)

   result = pd.merge(left.reset_index(), right.reset_index(),
                     on=['key'], how='inner').set_index(['key','X','Y'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_two_multiindex.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

Overlapping value columns
~~~~~~~~~~~~~~~~~~~~~~~~~

The merge ``suffixes`` argument takes a tuple of list of strings to append to
overlapping column names in the input DataFrames to disambiguate the result
columns:

.. ipython:: python

   left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})
   right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

   result = pd.merge(left, right, on='k')

.. ipython:: python
   :suppress:

   @savefig merging_merge_overlapped.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. ipython:: python

   result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])

.. ipython:: python
   :suppress:

   @savefig merging_merge_overlapped_suffix.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

``DataFrame.join`` has ``lsuffix`` and ``rsuffix`` arguments which behave
similarly.

.. ipython:: python

   left = left.set_index('k')
   right = right.set_index('k')
   result = left.join(right, lsuffix='_l', rsuffix='_r')

.. ipython:: python
   :suppress:

   @savefig merging_merge_overlapped_multi_suffix.png
   p.plot([left, right], result,
          labels=['left', 'right'], vertical=False);
   plt.close('all');

.. _merging.multiple_join:

Joining multiple DataFrame or Panel objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A list or tuple of DataFrames can also be passed to ``DataFrame.join`` to join
them together on their indexes. The same is true for ``Panel.join``.

.. ipython:: python

   right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])
   result = left.join([right, right2])

.. ipython:: python
   :suppress:

   @savefig merging_join_multi_df.png
   p.plot([left, right, right2], result,
          labels=['left', 'right', 'right2'], vertical=False);
   plt.close('all');

.. _merging.combine_first.update:

Merging together values within Series or DataFrame columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Another fairly common situation is to have two like-indexed (or similarly
indexed) Series or DataFrame objects and wanting to "patch" values in one
object from values for matching indices in the other. Here is an example:

.. ipython:: python

   df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],
                      [np.nan, 7., np.nan]])
   df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
                      index=[1, 2])

For this, use the ``combine_first`` method:

.. ipython:: python

   result = df1.combine_first(df2)

.. ipython:: python
   :suppress:

   @savefig merging_combine_first.png
   p.plot([df1, df2], result,
          labels=['df1', 'df2'], vertical=False);
   plt.close('all');

Note that this method only takes values from the right DataFrame if they are
missing in the left DataFrame. A related method, ``update``, alters non-NA
values inplace:

.. ipython:: python
   :suppress:

   df1_copy = df1.copy()

.. ipython:: python

   df1.update(df2)

.. ipython:: python
   :suppress:

   @savefig merging_update.png
   p.plot([df1_copy, df2], df1,
          labels=['df1', 'df2'], vertical=False);
   plt.close('all');

.. _merging.time_series:

Timeseries friendly merging
---------------------------

.. _merging.merge_ordered:

Merging Ordered Data
~~~~~~~~~~~~~~~~~~~~

A :func:`merge_ordered` function allows combining time series and other
ordered data. In particular it has an optional ``fill_method`` keyword to
fill/interpolate missing data:

.. ipython:: python

   left = pd.DataFrame({'k': ['K0', 'K1', 'K1', 'K2'],
                        'lv': [1, 2, 3, 4],
                        's': ['a', 'b', 'c', 'd']})

   right = pd.DataFrame({'k': ['K1', 'K2', 'K4'],
                         'rv': [1, 2, 3]})

   pd.merge_ordered(left, right, fill_method='ffill', left_by='s')

.. _merging.merge_asof:

Merging AsOf
~~~~~~~~~~~~

.. versionadded:: 0.19.0

A :func:`merge_asof` is similar to an ordered left-join except that we match on nearest key rather than equal keys. For each row in the ``left`` DataFrame, we select the last row in the ``right`` DataFrame whose ``on`` key is less than the left's key. Both DataFrames must be sorted by the key.

Optionally an asof merge can perform a group-wise merge. This matches the ``by`` key equally,
in addition to the nearest match on the ``on`` key.

For example; we might have ``trades`` and ``quotes`` and we want to ``asof`` merge them.

.. ipython:: python

   trades = pd.DataFrame({
       'time': pd.to_datetime(['20160525 13:30:00.023',
                               '20160525 13:30:00.038',
                               '20160525 13:30:00.048',
                               '20160525 13:30:00.048',
                               '20160525 13:30:00.048']),
       'ticker': ['MSFT', 'MSFT',
                  'GOOG', 'GOOG', 'AAPL'],
       'price': [51.95, 51.95,
                 720.77, 720.92, 98.00],
       'quantity': [75, 155,
                    100, 100, 100]},
       columns=['time', 'ticker', 'price', 'quantity'])

   quotes = pd.DataFrame({
       'time': pd.to_datetime(['20160525 13:30:00.023',
                               '20160525 13:30:00.023',
                               '20160525 13:30:00.030',
                               '20160525 13:30:00.041',
                               '20160525 13:30:00.048',
                               '20160525 13:30:00.049',
                               '20160525 13:30:00.072',
                               '20160525 13:30:00.075']),
       'ticker': ['GOOG', 'MSFT', 'MSFT',
                  'MSFT', 'GOOG', 'AAPL', 'GOOG',
                  'MSFT'],
       'bid': [720.50, 51.95, 51.97, 51.99,
               720.50, 97.99, 720.50, 52.01],
       'ask': [720.93, 51.96, 51.98, 52.00,
               720.93, 98.01, 720.88, 52.03]},
       columns=['time', 'ticker', 'bid', 'ask'])

.. ipython:: python

   trades
   quotes

By default we are taking the asof of the quotes.

.. ipython:: python

   pd.merge_asof(trades, quotes,
                 on='time',
                 by='ticker')

We only asof within ``2ms`` betwen the quote time and the trade time.

.. ipython:: python

   pd.merge_asof(trades, quotes,
                 on='time',
                 by='ticker',
                 tolerance=pd.Timedelta('2ms'))

We only asof within ``10ms`` betwen the quote time and the trade time and we exclude exact matches on time.
Note that though we exclude the exact matches (of the quotes), prior quotes DO propogate to that point
in time.

.. ipython:: python

   pd.merge_asof(trades, quotes,
                 on='time',
                 by='ticker',
                 tolerance=pd.Timedelta('10ms'),
                 allow_exact_matches=False)