1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
.. _options:
.. currentmodule:: pandas
.. ipython:: python
:suppress:
import pandas as pd
import numpy as np
np.random.seed(123456)
********************
Options and Settings
********************
Overview
--------
pandas has an options system that lets you customize some aspects of its behaviour,
display-related options being those the user is most likely to adjust.
Options have a full "dotted-style", case-insensitive name (e.g. ``display.max_rows``).
You can get/set options directly as attributes of the top-level ``options`` attribute:
.. ipython:: python
import pandas as pd
pd.options.display.max_rows
pd.options.display.max_rows = 999
pd.options.display.max_rows
There is also an API composed of 5 relevant functions, available directly from the ``pandas``
namespace:
- :func:`~pandas.get_option` / :func:`~pandas.set_option` - get/set the value of a single option.
- :func:`~pandas.reset_option` - reset one or more options to their default value.
- :func:`~pandas.describe_option` - print the descriptions of one or more options.
- :func:`~pandas.option_context` - execute a codeblock with a set of options
that revert to prior settings after execution.
**Note:** developers can check out pandas/core/config.py for more info.
All of the functions above accept a regexp pattern (``re.search`` style) as an argument,
and so passing in a substring will work - as long as it is unambiguous :
.. ipython:: python
pd.get_option("display.max_rows")
pd.set_option("display.max_rows",101)
pd.get_option("display.max_rows")
pd.set_option("max_r",102)
pd.get_option("display.max_rows")
The following will **not work** because it matches multiple option names, e.g.
``display.max_colwidth``, ``display.max_rows``, ``display.max_columns``:
.. ipython:: python
:okexcept:
try:
pd.get_option("column")
except KeyError as e:
print(e)
**Note:** Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.
You can get a list of available options and their descriptions with ``describe_option``. When called
with no argument ``describe_option`` will print out the descriptions for all available options.
.. ipython:: python
:suppress:
:okwarning:
pd.reset_option("all")
Getting and Setting Options
---------------------------
As described above, ``get_option()`` and ``set_option()`` are available from the
pandas namespace. To change an option, call ``set_option('option regex', new_value)``
.. ipython:: python
pd.get_option('mode.sim_interactive')
pd.set_option('mode.sim_interactive', True)
pd.get_option('mode.sim_interactive')
**Note:** that the option 'mode.sim_interactive' is mostly used for debugging purposes.
All options also have a default value, and you can use ``reset_option`` to do just that:
.. ipython:: python
:suppress:
pd.reset_option("display.max_rows")
.. ipython:: python
pd.get_option("display.max_rows")
pd.set_option("display.max_rows",999)
pd.get_option("display.max_rows")
pd.reset_option("display.max_rows")
pd.get_option("display.max_rows")
It's also possible to reset multiple options at once (using a regex):
.. ipython:: python
:okwarning:
pd.reset_option("^display")
``option_context`` context manager has been exposed through
the top-level API, allowing you to execute code with given option values. Option values
are restored automatically when you exit the `with` block:
.. ipython:: python
with pd.option_context("display.max_rows",10,"display.max_columns", 5):
print(pd.get_option("display.max_rows"))
print(pd.get_option("display.max_columns"))
print(pd.get_option("display.max_rows"))
print(pd.get_option("display.max_columns"))
Setting Startup Options in python/ipython Environment
-----------------------------------------------------
Using startup scripts for the python/ipython environment to import pandas and set options makes working with pandas more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where the startup folder is in a default ipython profile can be found at:
.. code-block:: none
$IPYTHONDIR/profile_default/startup
More information can be found in the `ipython documentation
<http://ipython.org/ipython-doc/stable/interactive/tutorial.html#startup-files>`__. An example startup script for pandas is displayed below:
.. code-block:: python
import pandas as pd
pd.set_option('display.max_rows', 999)
pd.set_option('precision', 5)
.. _options.frequently_used:
Frequently Used Options
-----------------------
The following is a walkthrough of the more frequently used display options.
``display.max_rows`` and ``display.max_columns`` sets the maximum number
of rows and columns displayed when a frame is pretty-printed. Truncated
lines are replaced by an ellipsis.
.. ipython:: python
df = pd.DataFrame(np.random.randn(7,2))
pd.set_option('max_rows', 7)
df
pd.set_option('max_rows', 5)
df
pd.reset_option('max_rows')
``display.expand_frame_repr`` allows for the the representation of
dataframes to stretch across pages, wrapped over the full column vs row-wise.
.. ipython:: python
df = pd.DataFrame(np.random.randn(5,10))
pd.set_option('expand_frame_repr', True)
df
pd.set_option('expand_frame_repr', False)
df
pd.reset_option('expand_frame_repr')
``display.large_repr`` lets you select whether to display dataframes that exceed
``max_columns`` or ``max_rows`` as a truncated frame, or as a summary.
.. ipython:: python
df = pd.DataFrame(np.random.randn(10,10))
pd.set_option('max_rows', 5)
pd.set_option('large_repr', 'truncate')
df
pd.set_option('large_repr', 'info')
df
pd.reset_option('large_repr')
pd.reset_option('max_rows')
``display.max_colwidth`` sets the maximum width of columns. Cells
of this length or longer will be truncated with an ellipsis.
.. ipython:: python
df = pd.DataFrame(np.array([['foo', 'bar', 'bim', 'uncomfortably long string'],
['horse', 'cow', 'banana', 'apple']]))
pd.set_option('max_colwidth',40)
df
pd.set_option('max_colwidth', 6)
df
pd.reset_option('max_colwidth')
``display.max_info_columns`` sets a threshold for when by-column info
will be given.
.. ipython:: python
df = pd.DataFrame(np.random.randn(10,10))
pd.set_option('max_info_columns', 11)
df.info()
pd.set_option('max_info_columns', 5)
df.info()
pd.reset_option('max_info_columns')
``display.max_info_rows``: ``df.info()`` will usually show null-counts for each column.
For large frames this can be quite slow. ``max_info_rows`` and ``max_info_cols``
limit this null check only to frames with smaller dimensions then specified. Note that you
can specify the option ``df.info(null_counts=True)`` to override on showing a particular frame.
.. ipython:: python
df =pd.DataFrame(np.random.choice([0,1,np.nan], size=(10,10)))
df
pd.set_option('max_info_rows', 11)
df.info()
pd.set_option('max_info_rows', 5)
df.info()
pd.reset_option('max_info_rows')
``display.precision`` sets the output display precision in terms of decimal places. This is only a
suggestion.
.. ipython:: python
df = pd.DataFrame(np.random.randn(5,5))
pd.set_option('precision',7)
df
pd.set_option('precision',4)
df
``display.chop_threshold`` sets at what level pandas rounds to zero when
it displays a Series of DataFrame. Note, this does not effect the
precision at which the number is stored.
.. ipython:: python
df = pd.DataFrame(np.random.randn(6,6))
pd.set_option('chop_threshold', 0)
df
pd.set_option('chop_threshold', .5)
df
pd.reset_option('chop_threshold')
``display.colheader_justify`` controls the justification of the headers.
Options are 'right', and 'left'.
.. ipython:: python
df = pd.DataFrame(np.array([np.random.randn(6), np.random.randint(1,9,6)*.1, np.zeros(6)]).T,
columns=['A', 'B', 'C'], dtype='float')
pd.set_option('colheader_justify', 'right')
df
pd.set_option('colheader_justify', 'left')
df
pd.reset_option('colheader_justify')
.. _options.available:
Available Options
-----------------
========================== ============ ==================================
Option Default Function
========================== ============ ==================================
display.chop_threshold None If set to a float value, all float
values smaller then the given
threshold will be displayed as
exactly 0 by repr and friends.
display.colheader_justify right Controls the justification of
column headers. used by DataFrameFormatter.
display.column_space 12 No description available.
display.date_dayfirst False When True, prints and parses dates
with the day first, eg 20/01/2005
display.date_yearfirst False When True, prints and parses dates
with the year first, eg 2005/01/20
display.encoding UTF-8 Defaults to the detected encoding
of the console. Specifies the encoding
to be used for strings returned by
to_string, these are generally strings
meant to be displayed on the console.
display.expand_frame_repr True Whether to print out the full DataFrame
repr for wide DataFrames across
multiple lines, `max_columns` is
still respected, but the output will
wrap-around across multiple "pages"
if its width exceeds `display.width`.
display.float_format None The callable should accept a floating
point number and return a string with
the desired format of the number.
This is used in some places like
SeriesFormatter.
See core.format.EngFormatter for an example.
display.height 60 Deprecated. Use `display.max_rows` instead.
display.large_repr truncate For DataFrames exceeding max_rows/max_cols,
the repr (and HTML repr) can show
a truncated table (the default from 0.13),
or switch to the view from df.info()
(the behaviour in earlier versions of pandas).
allowable settings, ['truncate', 'info']
display.latex.repr False Whether to produce a latex DataFrame
representation for jupyter frontends
that support it.
display.latex.escape True Escapes special caracters in Dataframes, when
using the to_latex method.
display.latex.longtable False Specifies if the to_latex method of a Dataframe
uses the longtable format.
display.line_width 80 Deprecated. Use `display.width` instead.
display.max_columns 20 max_rows and max_columns are used
in __repr__() methods to decide if
to_string() or info() is used to
render an object to a string. In
case python/IPython is running in
a terminal this can be set to 0 and
pandas will correctly auto-detect
the width the terminal and swap to
a smaller format in case all columns
would not fit vertically. The IPython
notebook, IPython qtconsole, or IDLE
do not run in a terminal and hence
it is not possible to do correct
auto-detection. 'None' value means
unlimited.
display.max_colwidth 50 The maximum width in characters of
a column in the repr of a pandas
data structure. When the column overflows,
a "..." placeholder is embedded in
the output.
display.max_info_columns 100 max_info_columns is used in DataFrame.info
method to decide if per column information
will be printed.
display.max_info_rows 1690785 df.info() will usually show null-counts
for each column. For large frames
this can be quite slow. max_info_rows
and max_info_cols limit this null
check only to frames with smaller
dimensions then specified.
display.max_rows 60 This sets the maximum number of rows
pandas should output when printing
out various output. For example,
this value determines whether the
repr() for a dataframe prints out
fully or just a summary repr.
'None' value means unlimited.
display.max_seq_items 100 when pretty-printing a long sequence,
no more then `max_seq_items` will
be printed. If items are omitted,
they will be denoted by the addition
of "..." to the resulting string.
If set to None, the number of items
to be printed is unlimited.
display.memory_usage True This specifies if the memory usage of
a DataFrame should be displayed when the
df.info() method is invoked.
display.multi_sparse True "Sparsify" MultiIndex display (don't
display repeated elements in outer
levels within groups)
display.notebook_repr_html True When True, IPython notebook will
use html representation for
pandas objects (if it is available).
display.pprint_nest_depth 3 Controls the number of nested levels
to process when pretty-printing
display.precision 6 Floating point output precision in
terms of number of places after the
decimal, for regular formatting as well
as scientific notation. Similar to
numpy's ``precision`` print option
display.show_dimensions truncate Whether to print out dimensions
at the end of DataFrame repr.
If 'truncate' is specified, only
print out the dimensions if the
frame is truncated (e.g. not display
all rows and/or columns)
display.width 80 Width of the display in characters.
In case python/IPython is running in
a terminal this can be set to None
and pandas will correctly auto-detect
the width. Note that the IPython notebook,
IPython qtconsole, or IDLE do not run in a
terminal and hence it is not possible
to correctly detect the width.
html.border 1 A ``border=value`` attribute is
inserted in the ``<table>`` tag
for the DataFrame HTML repr.
io.excel.xls.writer xlwt The default Excel writer engine for
'xls' files.
io.excel.xlsm.writer openpyxl The default Excel writer engine for
'xlsm' files. Available options:
'openpyxl' (the default).
io.excel.xlsx.writer openpyxl The default Excel writer engine for
'xlsx' files.
io.hdf.default_format None default format writing format, if
None, then put will default to
'fixed' and append will default to
'table'
io.hdf.dropna_table True drop ALL nan rows when appending
to a table
mode.chained_assignment warn Raise an exception, warn, or no
action if trying to use chained
assignment, The default is warn
mode.sim_interactive False Whether to simulate interactive mode
for purposes of testing
mode.use_inf_as_null False True means treat None, NaN, -INF,
INF as null (old way), False means
None and NaN are null, but INF, -INF
are not null (new way).
========================== ============ ==================================
.. _basics.console_output:
Number Formatting
------------------
pandas also allows you to set how numbers are displayed in the console.
This option is not set through the ``set_options`` API.
Use the ``set_eng_float_format`` function
to alter the floating-point formatting of pandas objects to produce a particular
format.
For instance:
.. ipython:: python
import numpy as np
pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
s/1.e3
s/1.e6
.. ipython:: python
:suppress:
:okwarning:
pd.reset_option('^display\.')
To round floats on a case-by-case basis, you can also use :meth:`~pandas.Series.round` and :meth:`~pandas.DataFrame.round`.
.. _options.east_asian_width:
Unicode Formatting
------------------
.. warning::
Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower).
Use only when it is actually required.
Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets.
If DataFrame or Series contains these characters, default output cannot be aligned properly.
.. note:: Screen captures are attached for each outputs to show the actual results.
.. ipython:: python
df = pd.DataFrame({u'国籍': ['UK', u'日本'], u'名前': ['Alice', u'しのぶ']})
df;
.. image:: _static/option_unicode01.png
Enable ``display.unicode.east_asian_width`` allows pandas to check each character's "East Asian Width" property.
These characters can be aligned properly by checking this property, but it takes longer time than standard ``len`` function.
.. ipython:: python
pd.set_option('display.unicode.east_asian_width', True)
df;
.. image:: _static/option_unicode02.png
In addition, Unicode contains characters which width is "Ambiguous". These character's width should be either 1 or 2 depending on terminal setting or encoding. Because this cannot be distinguished from Python, ``display.unicode.ambiguous_as_wide`` option is added to handle this.
By default, "Ambiguous" character's width, "¡" (inverted exclamation) in below example, is regarded as 1.
.. ipython:: python
df = pd.DataFrame({'a': ['xxx', u'¡¡'], 'b': ['yyy', u'¡¡']})
df;
.. image:: _static/option_unicode03.png
Enabling ``display.unicode.ambiguous_as_wide`` lets pandas to figure these character's width as 2. Note that this option will be effective only when ``display.unicode.east_asian_width`` is enabled. Confirm starting position has been changed, but is not aligned properly because the setting is mismatched with this environment.
.. ipython:: python
pd.set_option('display.unicode.ambiguous_as_wide', True)
df;
.. image:: _static/option_unicode04.png
.. ipython:: python
:suppress:
pd.set_option('display.unicode.east_asian_width', False)
pd.set_option('display.unicode.ambiguous_as_wide', False)
|