1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
.. currentmodule:: pandas
.. _sparse:
.. ipython:: python
:suppress:
import numpy as np
np.random.seed(123456)
import pandas as pd
import pandas.util.testing as tm
np.set_printoptions(precision=4, suppress=True)
pd.options.display.max_rows = 15
**********************
Sparse data structures
**********************
.. note:: The ``SparsePanel`` class has been removed in 0.19.0
We have implemented "sparse" versions of Series and DataFrame. These are not sparse
in the typical "mostly 0". Rather, you can view these objects as being "compressed"
where any data matching a specific value (``NaN`` / missing value, though any value
can be chosen) is omitted. A special ``SparseIndex`` object tracks where data has been
"sparsified". This will make much more sense in an example. All of the standard pandas
data structures have a ``to_sparse`` method:
.. ipython:: python
ts = pd.Series(randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
sts
The ``to_sparse`` method takes a ``kind`` argument (for the sparse index, see
below) and a ``fill_value``. So if we had a mostly zero Series, we could
convert it to sparse with ``fill_value=0``:
.. ipython:: python
ts.fillna(0).to_sparse(fill_value=0)
The sparse objects exist for memory efficiency reasons. Suppose you had a
large, mostly NA DataFrame:
.. ipython:: python
df = pd.DataFrame(randn(10000, 4))
df.ix[:9998] = np.nan
sdf = df.to_sparse()
sdf
sdf.density
As you can see, the density (% of values that have not been "compressed") is
extremely low. This sparse object takes up much less memory on disk (pickled)
and in the Python interpreter. Functionally, their behavior should be nearly
identical to their dense counterparts.
Any sparse object can be converted back to the standard dense form by calling
``to_dense``:
.. ipython:: python
sts.to_dense()
.. _sparse.array:
SparseArray
-----------
``SparseArray`` is the base layer for all of the sparse indexed data
structures. It is a 1-dimensional ndarray-like object storing only values
distinct from the ``fill_value``:
.. ipython:: python
arr = np.random.randn(10)
arr[2:5] = np.nan; arr[7:8] = np.nan
sparr = pd.SparseArray(arr)
sparr
Like the indexed objects (SparseSeries, SparseDataFrame), a ``SparseArray``
can be converted back to a regular ndarray by calling ``to_dense``:
.. ipython:: python
sparr.to_dense()
.. _sparse.list:
SparseList
----------
The ``SparseList`` class has been deprecated and will be removed in a future version.
See the `docs of a previous version <http://pandas.pydata.org/pandas-docs/version/0.18.1/sparse.html#sparselist>`__
for documentation on ``SparseList``.
SparseIndex objects
-------------------
Two kinds of ``SparseIndex`` are implemented, ``block`` and ``integer``. We
recommend using ``block`` as it's more memory efficient. The ``integer`` format
keeps an arrays of all of the locations where the data are not equal to the
fill value. The ``block`` format tracks only the locations and sizes of blocks
of data.
.. _sparse.dtype:
Sparse Dtypes
-------------
Sparse data should have the same dtype as its dense representation. Currently,
``float64``, ``int64`` and ``bool`` dtypes are supported. Depending on the original
dtype, ``fill_value`` default changes:
- ``float64``: ``np.nan``
- ``int64``: ``0``
- ``bool``: ``False``
.. ipython:: python
s = pd.Series([1, np.nan, np.nan])
s
s.to_sparse()
s = pd.Series([1, 0, 0])
s
s.to_sparse()
s = pd.Series([True, False, True])
s
s.to_sparse()
You can change the dtype using ``.astype()``, the result is also sparse. Note that
``.astype()`` also affects to the ``fill_value`` to keep its dense represantation.
.. ipython:: python
s = pd.Series([1, 0, 0, 0, 0])
s
ss = s.to_sparse()
ss
ss.astype(np.float64)
It raises if any value cannot be coerced to specified dtype.
.. code-block:: ipython
In [1]: ss = pd.Series([1, np.nan, np.nan]).to_sparse()
0 1.0
1 NaN
2 NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)
In [2]: ss.astype(np.int64)
ValueError: unable to coerce current fill_value nan to int64 dtype
.. _sparse.calculation:
Sparse Calculation
------------------
You can apply NumPy *ufuncs* to ``SparseArray`` and get a ``SparseArray`` as a result.
.. ipython:: python
arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan])
np.abs(arr)
The *ufunc* is also applied to ``fill_value``. This is needed to get
the correct dense result.
.. ipython:: python
arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1)
np.abs(arr)
np.abs(arr).to_dense()
.. _sparse.scipysparse:
Interaction with scipy.sparse
-----------------------------
Experimental api to transform between sparse pandas and scipy.sparse structures.
A :meth:`SparseSeries.to_coo` method is implemented for transforming a ``SparseSeries`` indexed by a ``MultiIndex`` to a ``scipy.sparse.coo_matrix``.
The method requires a ``MultiIndex`` with two or more levels.
.. ipython:: python
:suppress:
.. ipython:: python
s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
(1, 2, 'a', 1),
(1, 1, 'b', 0),
(1, 1, 'b', 1),
(2, 1, 'b', 0),
(2, 1, 'b', 1)],
names=['A', 'B', 'C', 'D'])
s
# SparseSeries
ss = s.to_sparse()
ss
In the example below, we transform the ``SparseSeries`` to a sparse representation of a 2-d array by specifying that the first and second ``MultiIndex`` levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.
.. ipython:: python
A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
column_levels=['C', 'D'],
sort_labels=True)
A
A.todense()
rows
columns
Specifying different row and column labels (and not sorting them) yields a different sparse matrix:
.. ipython:: python
A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'],
column_levels=['D'],
sort_labels=False)
A
A.todense()
rows
columns
A convenience method :meth:`SparseSeries.from_coo` is implemented for creating a ``SparseSeries`` from a ``scipy.sparse.coo_matrix``.
.. ipython:: python
:suppress:
.. ipython:: python
from scipy import sparse
A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
shape=(3, 4))
A
A.todense()
The default behaviour (with ``dense_index=False``) simply returns a ``SparseSeries`` containing
only the non-null entries.
.. ipython:: python
ss = pd.SparseSeries.from_coo(A)
ss
Specifying ``dense_index=True`` will result in an index that is the Cartesian product of the
row and columns coordinates of the matrix. Note that this will consume a significant amount of memory
(relative to ``dense_index=False``) if the sparse matrix is large (and sparse) enough.
.. ipython:: python
ss_dense = pd.SparseSeries.from_coo(A, dense_index=True)
ss_dense
|