1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
.. currentmodule:: pandas
.. _text:
.. ipython:: python
:suppress:
import numpy as np
import pandas as pd
randn = np.random.randn
np.set_printoptions(precision=4, suppress=True)
from pandas.compat import lrange
pd.options.display.max_rows=15
======================
Working with Text Data
======================
.. _text.string_methods:
Series and Index are equipped with a set of string processing methods
that make it easy to operate on each element of the array. Perhaps most
importantly, these methods exclude missing/NA values automatically. These are
accessed via the ``str`` attribute and generally have names matching
the equivalent (scalar) built-in string methods:
.. ipython:: python
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
s.str.upper()
s.str.len()
.. ipython:: python
idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])
idx.str.strip()
idx.str.lstrip()
idx.str.rstrip()
The string methods on Index are especially useful for cleaning up or
transforming DataFrame columns. For instance, you may have columns with
leading or trailing whitespace:
.. ipython:: python
df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '],
index=range(3))
df
Since ``df.columns`` is an Index object, we can use the ``.str`` accessor
.. ipython:: python
df.columns.str.strip()
df.columns.str.lower()
These string methods can then be used to clean up the columns as needed.
Here we are removing leading and trailing whitespaces, lowercasing all names,
and replacing any remaining whitespaces with underscores:
.. ipython:: python
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
df
.. note::
If you have a ``Series`` where lots of elements are repeated
(i.e. the number of unique elements in the ``Series`` is a lot smaller than the length of the
``Series``), it can be faster to convert the original ``Series`` to one of type
``category`` and then use ``.str.<method>`` or ``.dt.<property>`` on that.
The performance difference comes from the fact that, for ``Series`` of type ``category``, the
string operations are done on the ``.categories`` and not on each element of the
``Series``.
Please note that a ``Series`` of type ``category`` with string ``.categories`` has
some limitations in comparison of ``Series`` of type string (e.g. you can't add strings to
each other: ``s + " " + s`` won't work if ``s`` is a ``Series`` of type ``category``). Also,
``.str`` methods which operate on elements of type ``list`` are not available on such a
``Series``.
Splitting and Replacing Strings
-------------------------------
.. _text.split:
Methods like ``split`` return a Series of lists:
.. ipython:: python
s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
s2.str.split('_')
Elements in the split lists can be accessed using ``get`` or ``[]`` notation:
.. ipython:: python
s2.str.split('_').str.get(1)
s2.str.split('_').str[1]
Easy to expand this to return a DataFrame using ``expand``.
.. ipython:: python
s2.str.split('_', expand=True)
It is also possible to limit the number of splits:
.. ipython:: python
s2.str.split('_', expand=True, n=1)
``rsplit`` is similar to ``split`` except it works in the reverse direction,
i.e., from the end of the string to the beginning of the string:
.. ipython:: python
s2.str.rsplit('_', expand=True, n=1)
Methods like ``replace`` and ``findall`` take `regular expressions
<https://docs.python.org/2/library/re.html>`__, too:
.. ipython:: python
s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
'', np.nan, 'CABA', 'dog', 'cat'])
s3
s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Some caution must be taken to keep regular expressions in mind! For example, the
following code will cause trouble because of the regular expression meaning of
`$`:
.. ipython:: python
# Consider the following badly formatted financial data
dollars = pd.Series(['12', '-$10', '$10,000'])
# This does what you'd naively expect:
dollars.str.replace('$', '')
# But this doesn't:
dollars.str.replace('-$', '-')
# We need to escape the special character (for >1 len patterns)
dollars.str.replace(r'-\$', '-')
Indexing with ``.str``
----------------------
.. _text.indexing:
You can use ``[]`` notation to directly index by position locations. If you index past the end
of the string, the result will be a ``NaN``.
.. ipython:: python
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
'CABA', 'dog', 'cat'])
s.str[0]
s.str[1]
Extracting Substrings
---------------------
.. _text.extract:
Extract first match in each subject (extract)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionadded:: 0.13.0
.. warning::
In version 0.18.0, ``extract`` gained the ``expand`` argument. When
``expand=False`` it returns a ``Series``, ``Index``, or
``DataFrame``, depending on the subject and regular expression
pattern (same behavior as pre-0.18.0). When ``expand=True`` it
always returns a ``DataFrame``, which is more consistent and less
confusing from the perspective of a user.
The ``extract`` method accepts a `regular expression
<https://docs.python.org/2/library/re.html>`__ with at least one
capture group.
Extracting a regular expression with more than one group returns a
DataFrame with one column per group.
.. ipython:: python
pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Elements that do not match return a row filled with ``NaN``. Thus, a
Series of messy strings can be "converted" into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating ``get()`` to access tuples or ``re.match`` objects. The
dtype of the result is always object, even if no match is found and
the result only contains ``NaN``.
Named groups like
.. ipython:: python
pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
and optional groups like
.. ipython:: python
pd.Series(['a1', 'b2', '3']).str.extract('([ab])?(\d)', expand=False)
can also be used. Note that any capture group names in the regular
expression will be used for column names; otherwise capture group
numbers will be used.
Extracting a regular expression with one group returns a ``DataFrame``
with one column if ``expand=True``.
.. ipython:: python
pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
It returns a Series if ``expand=False``.
.. ipython:: python
pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Calling on an ``Index`` with a regex with exactly one capture group
returns a ``DataFrame`` with one column if ``expand=True``,
.. ipython:: python
s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
s
s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
It returns an ``Index`` if ``expand=False``.
.. ipython:: python
s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Calling on an ``Index`` with a regex with more than one capture group
returns a ``DataFrame`` if ``expand=True``.
.. ipython:: python
s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
It raises ``ValueError`` if ``expand=False``.
.. code-block:: python
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
The table below summarizes the behavior of ``extract(expand=False)``
(input subject in first column, number of groups in regex in
first row)
+--------+---------+------------+
| | 1 group | >1 group |
+--------+---------+------------+
| Index | Index | ValueError |
+--------+---------+------------+
| Series | Series | DataFrame |
+--------+---------+------------+
Extract all matches in each subject (extractall)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. _text.extractall:
.. versionadded:: 0.18.0
Unlike ``extract`` (which returns only the first match),
.. ipython:: python
s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
s
two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
s.str.extract(two_groups, expand=True)
the ``extractall`` method returns every match. The result of
``extractall`` is always a ``DataFrame`` with a ``MultiIndex`` on its
rows. The last level of the ``MultiIndex`` is named ``match`` and
indicates the order in the subject.
.. ipython:: python
s.str.extractall(two_groups)
When each subject string in the Series has exactly one match,
.. ipython:: python
s = pd.Series(['a3', 'b3', 'c2'])
s
then ``extractall(pat).xs(0, level='match')`` gives the same result as
``extract(pat)``.
.. ipython:: python
extract_result = s.str.extract(two_groups, expand=True)
extract_result
extractall_result = s.str.extractall(two_groups)
extractall_result
extractall_result.xs(0, level="match")
``Index`` also supports ``.str.extractall``. It returns a ``DataFrame`` which has the
same result as a ``Series.str.extractall`` with a default index (starts from 0).
.. versionadded:: 0.19.0
.. ipython:: python
pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Testing for Strings that Match or Contain a Pattern
---------------------------------------------------
You can check whether elements contain a pattern:
.. ipython:: python
pattern = r'[a-z][0-9]'
pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
or match a pattern:
.. ipython:: python
pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern, as_indexer=True)
The distinction between ``match`` and ``contains`` is strictness: ``match``
relies on strict ``re.match``, while ``contains`` relies on ``re.search``.
.. warning::
In previous versions, ``match`` was for *extracting* groups,
returning a not-so-convenient Series of tuples. The new method ``extract``
(described in the previous section) is now preferred.
This old, deprecated behavior of ``match`` is still the default. As
demonstrated above, use the new behavior by setting ``as_indexer=True``.
In this mode, ``match`` is analogous to ``contains``, returning a boolean
Series. The new behavior will become the default behavior in a future
release.
Methods like ``match``, ``contains``, ``startswith``, and ``endswith`` take
an extra ``na`` argument so missing values can be considered True or False:
.. ipython:: python
s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s4.str.contains('A', na=False)
.. _text.indicator:
Creating Indicator Variables
----------------------------
You can extract dummy variables from string columns.
For example if they are separated by a ``'|'``:
.. ipython:: python
s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
s.str.get_dummies(sep='|')
String ``Index`` also supports ``get_dummies`` which returns a ``MultiIndex``.
.. versionadded:: 0.18.1
.. ipython:: python
idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
idx.str.get_dummies(sep='|')
See also :func:`~pandas.get_dummies`.
Method Summary
--------------
.. _text.summary:
.. csv-table::
:header: "Method", "Description"
:widths: 20, 80
:delim: ;
:meth:`~Series.str.cat`;Concatenate strings
:meth:`~Series.str.split`;Split strings on delimiter
:meth:`~Series.str.rsplit`;Split strings on delimiter working from the end of the string
:meth:`~Series.str.get`;Index into each element (retrieve i-th element)
:meth:`~Series.str.join`;Join strings in each element of the Series with passed separator
:meth:`~Series.str.get_dummies`;Split strings on the delimiter returning DataFrame of dummy variables
:meth:`~Series.str.contains`;Return boolean array if each string contains pattern/regex
:meth:`~Series.str.replace`;Replace occurrences of pattern/regex with some other string
:meth:`~Series.str.repeat`;Duplicate values (``s.str.repeat(3)`` equivalent to ``x * 3``)
:meth:`~Series.str.pad`;"Add whitespace to left, right, or both sides of strings"
:meth:`~Series.str.center`;Equivalent to ``str.center``
:meth:`~Series.str.ljust`;Equivalent to ``str.ljust``
:meth:`~Series.str.rjust`;Equivalent to ``str.rjust``
:meth:`~Series.str.zfill`;Equivalent to ``str.zfill``
:meth:`~Series.str.wrap`;Split long strings into lines with length less than a given width
:meth:`~Series.str.slice`;Slice each string in the Series
:meth:`~Series.str.slice_replace`;Replace slice in each string with passed value
:meth:`~Series.str.count`;Count occurrences of pattern
:meth:`~Series.str.startswith`;Equivalent to ``str.startswith(pat)`` for each element
:meth:`~Series.str.endswith`;Equivalent to ``str.endswith(pat)`` for each element
:meth:`~Series.str.findall`;Compute list of all occurrences of pattern/regex for each string
:meth:`~Series.str.match`;"Call ``re.match`` on each element, returning matched groups as list"
:meth:`~Series.str.extract`;"Call ``re.search`` on each element, returning DataFrame with one row for each element and one column for each regex capture group"
:meth:`~Series.str.extractall`;"Call ``re.findall`` on each element, returning DataFrame with one row for each match and one column for each regex capture group"
:meth:`~Series.str.len`;Compute string lengths
:meth:`~Series.str.strip`;Equivalent to ``str.strip``
:meth:`~Series.str.rstrip`;Equivalent to ``str.rstrip``
:meth:`~Series.str.lstrip`;Equivalent to ``str.lstrip``
:meth:`~Series.str.partition`;Equivalent to ``str.partition``
:meth:`~Series.str.rpartition`;Equivalent to ``str.rpartition``
:meth:`~Series.str.lower`;Equivalent to ``str.lower``
:meth:`~Series.str.upper`;Equivalent to ``str.upper``
:meth:`~Series.str.find`;Equivalent to ``str.find``
:meth:`~Series.str.rfind`;Equivalent to ``str.rfind``
:meth:`~Series.str.index`;Equivalent to ``str.index``
:meth:`~Series.str.rindex`;Equivalent to ``str.rindex``
:meth:`~Series.str.capitalize`;Equivalent to ``str.capitalize``
:meth:`~Series.str.swapcase`;Equivalent to ``str.swapcase``
:meth:`~Series.str.normalize`;Return Unicode normal form. Equivalent to ``unicodedata.normalize``
:meth:`~Series.str.translate`;Equivalent to ``str.translate``
:meth:`~Series.str.isalnum`;Equivalent to ``str.isalnum``
:meth:`~Series.str.isalpha`;Equivalent to ``str.isalpha``
:meth:`~Series.str.isdigit`;Equivalent to ``str.isdigit``
:meth:`~Series.str.isspace`;Equivalent to ``str.isspace``
:meth:`~Series.str.islower`;Equivalent to ``str.islower``
:meth:`~Series.str.isupper`;Equivalent to ``str.isupper``
:meth:`~Series.str.istitle`;Equivalent to ``str.istitle``
:meth:`~Series.str.isnumeric`;Equivalent to ``str.isnumeric``
:meth:`~Series.str.isdecimal`;Equivalent to ``str.isdecimal``
|