1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
|
.. currentmodule:: pandas
.. _timeseries:
.. ipython:: python
:suppress:
from datetime import datetime, timedelta, time
import numpy as np
import pandas as pd
from pandas import offsets
np.random.seed(123456)
randn = np.random.randn
randint = np.random.randint
np.set_printoptions(precision=4, suppress=True)
pd.options.display.max_rows=15
import dateutil
import pytz
from dateutil.relativedelta import relativedelta
********************************
Time Series / Date functionality
********************************
pandas has proven very successful as a tool for working with time series data,
especially in the financial data analysis space. Using the NumPy ``datetime64`` and ``timedelta64`` dtypes,
we have consolidated a large number of features from other Python libraries like ``scikits.timeseries`` as well as created
a tremendous amount of new functionality for manipulating time series data.
In working with time series data, we will frequently seek to:
- generate sequences of fixed-frequency dates and time spans
- conform or convert time series to a particular frequency
- compute "relative" dates based on various non-standard time increments
(e.g. 5 business days before the last business day of the year), or "roll"
dates forward or backward
pandas provides a relatively compact and self-contained set of tools for
performing the above tasks.
Create a range of dates:
.. ipython:: python
# 72 hours starting with midnight Jan 1st, 2011
rng = pd.date_range('1/1/2011', periods=72, freq='H')
rng[:5]
Index pandas objects with dates:
.. ipython:: python
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts.head()
Change frequency and fill gaps:
.. ipython:: python
# to 45 minute frequency and forward fill
converted = ts.asfreq('45Min', method='pad')
converted.head()
Resample:
.. ipython:: python
# Daily means
ts.resample('D').mean()
.. _timeseries.overview:
Overview
--------
Following table shows the type of time-related classes pandas can handle and
how to create them.
================= =============================== ==================================================
Class Remarks How to create
================= =============================== ==================================================
``Timestamp`` Represents a single time stamp ``to_datetime``, ``Timestamp``
``DatetimeIndex`` Index of ``Timestamp`` ``to_datetime``, ``date_range``, ``DatetimeIndex``
``Period`` Represents a single time span ``Period``
``PeriodIndex`` Index of ``Period`` ``period_range``, ``PeriodIndex``
================= =============================== ==================================================
.. _timeseries.representation:
Time Stamps vs. Time Spans
--------------------------
Time-stamped data is the most basic type of timeseries data that associates
values with points in time. For pandas objects it means using the points in
time.
.. ipython:: python
pd.Timestamp(datetime(2012, 5, 1))
pd.Timestamp('2012-05-01')
pd.Timestamp(2012, 5, 1)
However, in many cases it is more natural to associate things like change
variables with a time span instead. The span represented by ``Period`` can be
specified explicitly, or inferred from datetime string format.
For example:
.. ipython:: python
pd.Period('2011-01')
pd.Period('2012-05', freq='D')
``Timestamp`` and ``Period`` can be the index. Lists of ``Timestamp`` and
``Period`` are automatically coerce to ``DatetimeIndex`` and ``PeriodIndex``
respectively.
.. ipython:: python
dates = [pd.Timestamp('2012-05-01'), pd.Timestamp('2012-05-02'), pd.Timestamp('2012-05-03')]
ts = pd.Series(np.random.randn(3), dates)
type(ts.index)
ts.index
ts
periods = [pd.Period('2012-01'), pd.Period('2012-02'), pd.Period('2012-03')]
ts = pd.Series(np.random.randn(3), periods)
type(ts.index)
ts.index
ts
pandas allows you to capture both representations and
convert between them. Under the hood, pandas represents timestamps using
instances of ``Timestamp`` and sequences of timestamps using instances of
``DatetimeIndex``. For regular time spans, pandas uses ``Period`` objects for
scalar values and ``PeriodIndex`` for sequences of spans. Better support for
irregular intervals with arbitrary start and end points are forth-coming in
future releases.
.. _timeseries.converting:
Converting to Timestamps
------------------------
To convert a Series or list-like object of date-like objects e.g. strings,
epochs, or a mixture, you can use the ``to_datetime`` function. When passed
a Series, this returns a Series (with the same index), while a list-like
is converted to a DatetimeIndex:
.. ipython:: python
pd.to_datetime(pd.Series(['Jul 31, 2009', '2010-01-10', None]))
pd.to_datetime(['2005/11/23', '2010.12.31'])
If you use dates which start with the day first (i.e. European style),
you can pass the ``dayfirst`` flag:
.. ipython:: python
pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
pd.to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)
.. warning::
You see in the above example that ``dayfirst`` isn't strict, so if a date
can't be parsed with the day being first it will be parsed as if
``dayfirst`` were False.
.. note::
Specifying a ``format`` argument will potentially speed up the conversion
considerably and on versions later then 0.13.0 explicitly specifying
a format string of '%Y%m%d' takes a faster path still.
If you pass a single string to ``to_datetime``, it returns single ``Timestamp``.
Also, ``Timestamp`` can accept the string input.
Note that ``Timestamp`` doesn't accept string parsing option like ``dayfirst``
or ``format``, use ``to_datetime`` if these are required.
.. ipython:: python
pd.to_datetime('2010/11/12')
pd.Timestamp('2010/11/12')
.. versionadded:: 0.18.1
You can also pass a ``DataFrame`` of integer or string columns to assemble into a ``Series`` of ``Timestamps``.
.. ipython:: python
df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5],
'hour': [2, 3]})
pd.to_datetime(df)
You can pass only the columns that you need to assemble.
.. ipython:: python
pd.to_datetime(df[['year', 'month', 'day']])
``pd.to_datetime`` looks for standard designations of the datetime component in the column names, including:
- required: ``year``, ``month``, ``day``
- optional: ``hour``, ``minute``, ``second``, ``millisecond``, ``microsecond``, ``nanosecond``
Invalid Data
~~~~~~~~~~~~
.. note::
In version 0.17.0, the default for ``to_datetime`` is now ``errors='raise'``, rather than ``errors='ignore'``. This means
that invalid parsing will raise rather that return the original input as in previous versions.
Pass ``errors='coerce'`` to convert invalid data to ``NaT`` (not a time):
Raise when unparseable, this is the default
.. code-block:: ipython
In [2]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
ValueError: Unknown string format
Return the original input when unparseable
.. code-block:: ipython
In [4]: pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
Out[4]: array(['2009/07/31', 'asd'], dtype=object)
Return NaT for input when unparseable
.. code-block:: ipython
In [6]: pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
Out[6]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
Epoch Timestamps
~~~~~~~~~~~~~~~~
It's also possible to convert integer or float epoch times. The default unit
for these is nanoseconds (since these are how ``Timestamp`` s are stored). However,
often epochs are stored in another ``unit`` which can be specified:
Typical epoch stored units
.. ipython:: python
pd.to_datetime([1349720105, 1349806505, 1349892905,
1349979305, 1350065705], unit='s')
pd.to_datetime([1349720105100, 1349720105200, 1349720105300,
1349720105400, 1349720105500 ], unit='ms')
These *work*, but the results may be unexpected.
.. ipython:: python
pd.to_datetime([1])
pd.to_datetime([1, 3.14], unit='s')
.. note::
Epoch times will be rounded to the nearest nanosecond.
.. _timeseries.daterange:
Generating Ranges of Timestamps
-------------------------------
To generate an index with time stamps, you can use either the DatetimeIndex or
Index constructor and pass in a list of datetime objects:
.. ipython:: python
dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
# Note the frequency information
index = pd.DatetimeIndex(dates)
index
# Automatically converted to DatetimeIndex
index = pd.Index(dates)
index
Practically, this becomes very cumbersome because we often need a very long
index with a large number of timestamps. If we need timestamps on a regular
frequency, we can use the pandas functions ``date_range`` and ``bdate_range``
to create timestamp indexes.
.. ipython:: python
index = pd.date_range('2000-1-1', periods=1000, freq='M')
index
index = pd.bdate_range('2012-1-1', periods=250)
index
Convenience functions like ``date_range`` and ``bdate_range`` utilize a
variety of frequency aliases. The default frequency for ``date_range`` is a
**calendar day** while the default for ``bdate_range`` is a **business day**
.. ipython:: python
start = datetime(2011, 1, 1)
end = datetime(2012, 1, 1)
rng = pd.date_range(start, end)
rng
rng = pd.bdate_range(start, end)
rng
``date_range`` and ``bdate_range`` make it easy to generate a range of dates
using various combinations of parameters like ``start``, ``end``,
``periods``, and ``freq``:
.. ipython:: python
pd.date_range(start, end, freq='BM')
pd.date_range(start, end, freq='W')
pd.bdate_range(end=end, periods=20)
pd.bdate_range(start=start, periods=20)
The start and end dates are strictly inclusive. So it will not generate any
dates outside of those dates if specified.
.. _timeseries.timestamp-limits:
Timestamp limitations
---------------------
Since pandas represents timestamps in nanosecond resolution, the timespan that
can be represented using a 64-bit integer is limited to approximately 584 years:
.. ipython:: python
pd.Timestamp.min
pd.Timestamp.max
See :ref:`here <timeseries.oob>` for ways to represent data outside these bound.
.. _timeseries.datetimeindex:
DatetimeIndex
-------------
One of the main uses for ``DatetimeIndex`` is as an index for pandas objects.
The ``DatetimeIndex`` class contains many timeseries related optimizations:
- A large range of dates for various offsets are pre-computed and cached
under the hood in order to make generating subsequent date ranges very fast
(just have to grab a slice)
- Fast shifting using the ``shift`` and ``tshift`` method on pandas objects
- Unioning of overlapping DatetimeIndex objects with the same frequency is
very fast (important for fast data alignment)
- Quick access to date fields via properties such as ``year``, ``month``, etc.
- Regularization functions like ``snap`` and very fast ``asof`` logic
DatetimeIndex objects has all the basic functionality of regular Index objects
and a smorgasbord of advanced timeseries-specific methods for easy frequency
processing.
.. seealso::
:ref:`Reindexing methods <basics.reindexing>`
.. note::
While pandas does not force you to have a sorted date index, some of these
methods may have unexpected or incorrect behavior if the dates are
unsorted. So please be careful.
``DatetimeIndex`` can be used like a regular index and offers all of its
intelligent functionality like selection, slicing, etc.
.. ipython:: python
rng = pd.date_range(start, end, freq='BM')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts.index
ts[:5].index
ts[::2].index
.. _timeseries.partialindexing:
DatetimeIndex Partial String Indexing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can pass in dates and strings that parse to dates as indexing parameters:
.. ipython:: python
ts['1/31/2011']
ts[datetime(2011, 12, 25):]
ts['10/31/2011':'12/31/2011']
To provide convenience for accessing longer time series, you can also pass in
the year or year and month as strings:
.. ipython:: python
ts['2011']
ts['2011-6']
This type of slicing will work on a DataFrame with a ``DateTimeIndex`` as well. Since the
partial string selection is a form of label slicing, the endpoints **will be** included. This
would include matching times on an included date. Here's an example:
.. ipython:: python
dft = pd.DataFrame(randn(100000,1),
columns=['A'],
index=pd.date_range('20130101',periods=100000,freq='T'))
dft
dft['2013']
This starts on the very first time in the month, and includes the last date & time for the month
.. ipython:: python
dft['2013-1':'2013-2']
This specifies a stop time **that includes all of the times on the last day**
.. ipython:: python
dft['2013-1':'2013-2-28']
This specifies an **exact** stop time (and is not the same as the above)
.. ipython:: python
dft['2013-1':'2013-2-28 00:00:00']
We are stopping on the included end-point as it is part of the index
.. ipython:: python
dft['2013-1-15':'2013-1-15 12:30:00']
.. warning::
The following selection will raise a ``KeyError``; otherwise this selection methodology
would be inconsistent with other selection methods in pandas (as this is not a *slice*, nor does it
resolve to one)
.. code-block:: python
dft['2013-1-15 12:30:00']
To select a single row, use ``.loc``
.. ipython:: python
dft.loc['2013-1-15 12:30:00']
.. versionadded:: 0.18.0
DatetimeIndex Partial String Indexing also works on DataFrames with a ``MultiIndex``. For example:
.. ipython:: python
dft2 = pd.DataFrame(np.random.randn(20, 1),
columns=['A'],
index=pd.MultiIndex.from_product([pd.date_range('20130101',
periods=10,
freq='12H'),
['a', 'b']]))
dft2
dft2.loc['2013-01-05']
idx = pd.IndexSlice
dft2 = dft2.swaplevel(0, 1).sort_index()
dft2.loc[idx[:, '2013-01-05'], :]
Datetime Indexing
~~~~~~~~~~~~~~~~~
Indexing a ``DateTimeIndex`` with a partial string depends on the "accuracy" of the period, in other words how specific the interval is in relation to the frequency of the index. In contrast, indexing with datetime objects is exact, because the objects have exact meaning. These also follow the semantics of *including both endpoints*.
These ``datetime`` objects are specific ``hours, minutes,`` and ``seconds`` even though they were not explicitly specified (they are ``0``).
.. ipython:: python
dft[datetime(2013, 1, 1):datetime(2013,2,28)]
With no defaults.
.. ipython:: python
dft[datetime(2013, 1, 1, 10, 12, 0):datetime(2013, 2, 28, 10, 12, 0)]
Truncating & Fancy Indexing
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A ``truncate`` convenience function is provided that is equivalent to slicing:
.. ipython:: python
ts.truncate(before='10/31/2011', after='12/31/2011')
Even complicated fancy indexing that breaks the DatetimeIndex's frequency
regularity will result in a ``DatetimeIndex`` (but frequency is lost):
.. ipython:: python
ts[[0, 2, 6]].index
.. _timeseries.offsets:
Time/Date Components
~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several time/date properties that one can access from ``Timestamp`` or a collection of timestamps like a ``DateTimeIndex``.
.. csv-table::
:header: "Property", "Description"
:widths: 15, 65
year, "The year of the datetime"
month,"The month of the datetime"
day,"The days of the datetime"
hour,"The hour of the datetime"
minute,"The minutes of the datetime"
second,"The seconds of the datetime"
microsecond,"The microseconds of the datetime"
nanosecond,"The nanoseconds of the datetime"
date,"Returns datetime.date (does not contain timezone information)"
time,"Returns datetime.time (does not contain timezone information)"
dayofyear,"The ordinal day of year"
weekofyear,"The week ordinal of the year"
week,"The week ordinal of the year"
dayofweek,"The numer of the day of the week with Monday=0, Sunday=6"
weekday,"The number of the day of the week with Monday=0, Sunday=6"
weekday_name,"The name of the day in a week (ex: Friday)"
quarter,"Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc."
days_in_month,"The number of days in the month of the datetime"
is_month_start,"Logical indicating if first day of month (defined by frequency)"
is_month_end,"Logical indicating if last day of month (defined by frequency)"
is_quarter_start,"Logical indicating if first day of quarter (defined by frequency)"
is_quarter_end,"Logical indicating if last day of quarter (defined by frequency)"
is_year_start,"Logical indicating if first day of year (defined by frequency)"
is_year_end,"Logical indicating if last day of year (defined by frequency)"
is_leap_year,"Logical indicating if the date belongs to a leap year"
Furthermore, if you have a ``Series`` with datetimelike values, then you can access these properties via the ``.dt`` accessor, see the :ref:`docs <basics.dt_accessors>`
DateOffset objects
------------------
In the preceding examples, we created DatetimeIndex objects at various
frequencies by passing in :ref:`frequency strings <timeseries.offset_aliases>`
like 'M', 'W', and 'BM to the ``freq`` keyword. Under the hood, these frequency
strings are being translated into an instance of pandas ``DateOffset``,
which represents a regular frequency increment. Specific offset logic like
"month", "business day", or "one hour" is represented in its various subclasses.
.. csv-table::
:header: "Class name", "Description"
:widths: 15, 65
DateOffset, "Generic offset class, defaults to 1 calendar day"
BDay, "business day (weekday)"
CDay, "custom business day (experimental)"
Week, "one week, optionally anchored on a day of the week"
WeekOfMonth, "the x-th day of the y-th week of each month"
LastWeekOfMonth, "the x-th day of the last week of each month"
MonthEnd, "calendar month end"
MonthBegin, "calendar month begin"
BMonthEnd, "business month end"
BMonthBegin, "business month begin"
CBMonthEnd, "custom business month end"
CBMonthBegin, "custom business month begin"
SemiMonthEnd, "15th (or other day_of_month) and calendar month end"
SemiMonthBegin, "15th (or other day_of_month) and calendar month begin"
QuarterEnd, "calendar quarter end"
QuarterBegin, "calendar quarter begin"
BQuarterEnd, "business quarter end"
BQuarterBegin, "business quarter begin"
FY5253Quarter, "retail (aka 52-53 week) quarter"
YearEnd, "calendar year end"
YearBegin, "calendar year begin"
BYearEnd, "business year end"
BYearBegin, "business year begin"
FY5253, "retail (aka 52-53 week) year"
BusinessHour, "business hour"
CustomBusinessHour, "custom business hour"
Hour, "one hour"
Minute, "one minute"
Second, "one second"
Milli, "one millisecond"
Micro, "one microsecond"
Nano, "one nanosecond"
The basic ``DateOffset`` takes the same arguments as
``dateutil.relativedelta``, which works like:
.. ipython:: python
d = datetime(2008, 8, 18, 9, 0)
d + relativedelta(months=4, days=5)
We could have done the same thing with ``DateOffset``:
.. ipython:: python
from pandas.tseries.offsets import *
d + DateOffset(months=4, days=5)
The key features of a ``DateOffset`` object are:
- it can be added / subtracted to/from a datetime object to obtain a
shifted date
- it can be multiplied by an integer (positive or negative) so that the
increment will be applied multiple times
- it has ``rollforward`` and ``rollback`` methods for moving a date forward
or backward to the next or previous "offset date"
Subclasses of ``DateOffset`` define the ``apply`` function which dictates
custom date increment logic, such as adding business days:
.. code-block:: python
class BDay(DateOffset):
"""DateOffset increments between business days"""
def apply(self, other):
...
.. ipython:: python
d - 5 * BDay()
d + BMonthEnd()
The ``rollforward`` and ``rollback`` methods do exactly what you would expect:
.. ipython:: python
d
offset = BMonthEnd()
offset.rollforward(d)
offset.rollback(d)
It's definitely worth exploring the ``pandas.tseries.offsets`` module and the
various docstrings for the classes.
These operations (``apply``, ``rollforward`` and ``rollback``) preserves time (hour, minute, etc) information by default. To reset time, use ``normalize=True`` keyword when creating the offset instance. If ``normalize=True``, result is normalized after the function is applied.
.. ipython:: python
day = Day()
day.apply(pd.Timestamp('2014-01-01 09:00'))
day = Day(normalize=True)
day.apply(pd.Timestamp('2014-01-01 09:00'))
hour = Hour()
hour.apply(pd.Timestamp('2014-01-01 22:00'))
hour = Hour(normalize=True)
hour.apply(pd.Timestamp('2014-01-01 22:00'))
hour.apply(pd.Timestamp('2014-01-01 23:00'))
Parametric offsets
~~~~~~~~~~~~~~~~~~
Some of the offsets can be "parameterized" when created to result in different
behaviors. For example, the ``Week`` offset for generating weekly data accepts a
``weekday`` parameter which results in the generated dates always lying on a
particular day of the week:
.. ipython:: python
d
d + Week()
d + Week(weekday=4)
(d + Week(weekday=4)).weekday()
d - Week()
``normalize`` option will be effective for addition and subtraction.
.. ipython:: python
d + Week(normalize=True)
d - Week(normalize=True)
Another example is parameterizing ``YearEnd`` with the specific ending month:
.. ipython:: python
d + YearEnd()
d + YearEnd(month=6)
.. _timeseries.offsetseries:
Using offsets with ``Series`` / ``DatetimeIndex``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Offsets can be used with either a ``Series`` or ``DatetimeIndex`` to
apply the offset to each element.
.. ipython:: python
rng = pd.date_range('2012-01-01', '2012-01-03')
s = pd.Series(rng)
rng
rng + DateOffset(months=2)
s + DateOffset(months=2)
s - DateOffset(months=2)
If the offset class maps directly to a ``Timedelta`` (``Day``, ``Hour``,
``Minute``, ``Second``, ``Micro``, ``Milli``, ``Nano``) it can be
used exactly like a ``Timedelta`` - see the
:ref:`Timedelta section<timedeltas.operations>` for more examples.
.. ipython:: python
s - Day(2)
td = s - pd.Series(pd.date_range('2011-12-29', '2011-12-31'))
td
td + Minute(15)
Note that some offsets (such as ``BQuarterEnd``) do not have a
vectorized implementation. They can still be used but may
calculate significantly slower and will raise a ``PerformanceWarning``
.. ipython:: python
:okwarning:
rng + BQuarterEnd()
.. _timeseries.custombusinessdays:
Custom Business Days (Experimental)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``CDay`` or ``CustomBusinessDay`` class provides a parametric
``BusinessDay`` class which can be used to create customized business day
calendars which account for local holidays and local weekend conventions.
As an interesting example, let's look at Egypt where a Friday-Saturday weekend is observed.
.. ipython:: python
from pandas.tseries.offsets import CustomBusinessDay
weekmask_egypt = 'Sun Mon Tue Wed Thu'
# They also observe International Workers' Day so let's
# add that for a couple of years
holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]
bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)
dt = datetime(2013, 4, 30)
dt + 2 * bday_egypt
Let's map to the weekday names
.. ipython:: python
dts = pd.date_range(dt, periods=5, freq=bday_egypt)
pd.Series(dts.weekday, dts).map(pd.Series('Mon Tue Wed Thu Fri Sat Sun'.split()))
As of v0.14 holiday calendars can be used to provide the list of holidays. See the
:ref:`holiday calendar<timeseries.holiday>` section for more information.
.. ipython:: python
from pandas.tseries.holiday import USFederalHolidayCalendar
bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())
# Friday before MLK Day
dt = datetime(2014, 1, 17)
# Tuesday after MLK Day (Monday is skipped because it's a holiday)
dt + bday_us
Monthly offsets that respect a certain holiday calendar can be defined
in the usual way.
.. ipython:: python
from pandas.tseries.offsets import CustomBusinessMonthBegin
bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())
# Skip new years
dt = datetime(2013, 12, 17)
dt + bmth_us
# Define date index with custom offset
pd.DatetimeIndex(start='20100101',end='20120101',freq=bmth_us)
.. note::
The frequency string 'C' is used to indicate that a CustomBusinessDay
DateOffset is used, it is important to note that since CustomBusinessDay is
a parameterised type, instances of CustomBusinessDay may differ and this is
not detectable from the 'C' frequency string. The user therefore needs to
ensure that the 'C' frequency string is used consistently within the user's
application.
.. _timeseries.businesshour:
Business Hour
~~~~~~~~~~~~~
The ``BusinessHour`` class provides a business hour representation on ``BusinessDay``,
allowing to use specific start and end times.
By default, ``BusinessHour`` uses 9:00 - 17:00 as business hours.
Adding ``BusinessHour`` will increment ``Timestamp`` by hourly.
If target ``Timestamp`` is out of business hours, move to the next business hour then increment it.
If the result exceeds the business hours end, remaining is added to the next business day.
.. ipython:: python
bh = BusinessHour()
bh
# 2014-08-01 is Friday
pd.Timestamp('2014-08-01 10:00').weekday()
pd.Timestamp('2014-08-01 10:00') + bh
# Below example is the same as: pd.Timestamp('2014-08-01 09:00') + bh
pd.Timestamp('2014-08-01 08:00') + bh
# If the results is on the end time, move to the next business day
pd.Timestamp('2014-08-01 16:00') + bh
# Remainings are added to the next day
pd.Timestamp('2014-08-01 16:30') + bh
# Adding 2 business hours
pd.Timestamp('2014-08-01 10:00') + BusinessHour(2)
# Subtracting 3 business hours
pd.Timestamp('2014-08-01 10:00') + BusinessHour(-3)
Also, you can specify ``start`` and ``end`` time by keywords.
Argument must be ``str`` which has ``hour:minute`` representation or ``datetime.time`` instance.
Specifying seconds, microseconds and nanoseconds as business hour results in ``ValueError``.
.. ipython:: python
bh = BusinessHour(start='11:00', end=time(20, 0))
bh
pd.Timestamp('2014-08-01 13:00') + bh
pd.Timestamp('2014-08-01 09:00') + bh
pd.Timestamp('2014-08-01 18:00') + bh
Passing ``start`` time later than ``end`` represents midnight business hour.
In this case, business hour exceeds midnight and overlap to the next day.
Valid business hours are distinguished by whether it started from valid ``BusinessDay``.
.. ipython:: python
bh = BusinessHour(start='17:00', end='09:00')
bh
pd.Timestamp('2014-08-01 17:00') + bh
pd.Timestamp('2014-08-01 23:00') + bh
# Although 2014-08-02 is Satuaday,
# it is valid because it starts from 08-01 (Friday).
pd.Timestamp('2014-08-02 04:00') + bh
# Although 2014-08-04 is Monday,
# it is out of business hours because it starts from 08-03 (Sunday).
pd.Timestamp('2014-08-04 04:00') + bh
Applying ``BusinessHour.rollforward`` and ``rollback`` to out of business hours results in
the next business hour start or previous day's end. Different from other offsets, ``BusinessHour.rollforward``
may output different results from ``apply`` by definition.
This is because one day's business hour end is equal to next day's business hour start. For example,
under the default business hours (9:00 - 17:00), there is no gap (0 minutes) between ``2014-08-01 17:00`` and
``2014-08-04 09:00``.
.. ipython:: python
# This adjusts a Timestamp to business hour edge
BusinessHour().rollback(pd.Timestamp('2014-08-02 15:00'))
BusinessHour().rollforward(pd.Timestamp('2014-08-02 15:00'))
# It is the same as BusinessHour().apply(pd.Timestamp('2014-08-01 17:00')).
# And it is the same as BusinessHour().apply(pd.Timestamp('2014-08-04 09:00'))
BusinessHour().apply(pd.Timestamp('2014-08-02 15:00'))
# BusinessDay results (for reference)
BusinessHour().rollforward(pd.Timestamp('2014-08-02'))
# It is the same as BusinessDay().apply(pd.Timestamp('2014-08-01'))
# The result is the same as rollworward because BusinessDay never overlap.
BusinessHour().apply(pd.Timestamp('2014-08-02'))
``BusinessHour`` regards Saturday and Sunday as holidays. To use arbitrary holidays,
you can use ``CustomBusinessHour`` offset, see :ref:`Custom Business Hour <timeseries.custombusinesshour>`:
.. _timeseries.custombusinesshour:
Custom Business Hour
~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 0.18.1
The ``CustomBusinessHour`` is a mixture of ``BusinessHour`` and ``CustomBusinessDay`` which
allows you to specify arbitrary holidays. ``CustomBusinessHour`` works as the same
as ``BusinessHour`` except that it skips specified custom holidays.
.. ipython:: python
from pandas.tseries.holiday import USFederalHolidayCalendar
bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
# Friday before MLK Day
dt = datetime(2014, 1, 17, 15)
dt + bhour_us
# Tuesday after MLK Day (Monday is skipped because it's a holiday)
dt + bhour_us * 2
You can use keyword arguments suported by either ``BusinessHour`` and ``CustomBusinessDay``.
.. ipython:: python
bhour_mon = CustomBusinessHour(start='10:00', weekmask='Tue Wed Thu Fri')
# Monday is skipped because it's a holiday, business hour starts from 10:00
dt + bhour_mon * 2
.. _timeseries.offset_aliases:
Offset Aliases
~~~~~~~~~~~~~~
A number of string aliases are given to useful common time series
frequencies. We will refer to these aliases as *offset aliases*
(referred to as *time rules* prior to v0.8.0).
.. csv-table::
:header: "Alias", "Description"
:widths: 15, 100
"B", "business day frequency"
"C", "custom business day frequency (experimental)"
"D", "calendar day frequency"
"W", "weekly frequency"
"M", "month end frequency"
"SM", "semi-month end frequency (15th and end of month)"
"BM", "business month end frequency"
"CBM", "custom business month end frequency"
"MS", "month start frequency"
"SMS", "semi-month start frequency (1st and 15th)"
"BMS", "business month start frequency"
"CBMS", "custom business month start frequency"
"Q", "quarter end frequency"
"BQ", "business quarter endfrequency"
"QS", "quarter start frequency"
"BQS", "business quarter start frequency"
"A", "year end frequency"
"BA", "business year end frequency"
"AS", "year start frequency"
"BAS", "business year start frequency"
"BH", "business hour frequency"
"H", "hourly frequency"
"T, min", "minutely frequency"
"S", "secondly frequency"
"L, ms", "milliseconds"
"U, us", "microseconds"
"N", "nanoseconds"
Combining Aliases
~~~~~~~~~~~~~~~~~
As we have seen previously, the alias and the offset instance are fungible in
most functions:
.. ipython:: python
pd.date_range(start, periods=5, freq='B')
pd.date_range(start, periods=5, freq=BDay())
You can combine together day and intraday offsets:
.. ipython:: python
pd.date_range(start, periods=10, freq='2h20min')
pd.date_range(start, periods=10, freq='1D10U')
Anchored Offsets
~~~~~~~~~~~~~~~~
For some frequencies you can specify an anchoring suffix:
.. csv-table::
:header: "Alias", "Description"
:widths: 15, 100
"W\-SUN", "weekly frequency (sundays). Same as 'W'"
"W\-MON", "weekly frequency (mondays)"
"W\-TUE", "weekly frequency (tuesdays)"
"W\-WED", "weekly frequency (wednesdays)"
"W\-THU", "weekly frequency (thursdays)"
"W\-FRI", "weekly frequency (fridays)"
"W\-SAT", "weekly frequency (saturdays)"
"(B)Q(S)\-DEC", "quarterly frequency, year ends in December. Same as 'Q'"
"(B)Q(S)\-JAN", "quarterly frequency, year ends in January"
"(B)Q(S)\-FEB", "quarterly frequency, year ends in February"
"(B)Q(S)\-MAR", "quarterly frequency, year ends in March"
"(B)Q(S)\-APR", "quarterly frequency, year ends in April"
"(B)Q(S)\-MAY", "quarterly frequency, year ends in May"
"(B)Q(S)\-JUN", "quarterly frequency, year ends in June"
"(B)Q(S)\-JUL", "quarterly frequency, year ends in July"
"(B)Q(S)\-AUG", "quarterly frequency, year ends in August"
"(B)Q(S)\-SEP", "quarterly frequency, year ends in September"
"(B)Q(S)\-OCT", "quarterly frequency, year ends in October"
"(B)Q(S)\-NOV", "quarterly frequency, year ends in November"
"(B)A(S)\-DEC", "annual frequency, anchored end of December. Same as 'A'"
"(B)A(S)\-JAN", "annual frequency, anchored end of January"
"(B)A(S)\-FEB", "annual frequency, anchored end of February"
"(B)A(S)\-MAR", "annual frequency, anchored end of March"
"(B)A(S)\-APR", "annual frequency, anchored end of April"
"(B)A(S)\-MAY", "annual frequency, anchored end of May"
"(B)A(S)\-JUN", "annual frequency, anchored end of June"
"(B)A(S)\-JUL", "annual frequency, anchored end of July"
"(B)A(S)\-AUG", "annual frequency, anchored end of August"
"(B)A(S)\-SEP", "annual frequency, anchored end of September"
"(B)A(S)\-OCT", "annual frequency, anchored end of October"
"(B)A(S)\-NOV", "annual frequency, anchored end of November"
These can be used as arguments to ``date_range``, ``bdate_range``, constructors
for ``DatetimeIndex``, as well as various other timeseries-related functions
in pandas.
Anchored Offset Semantics
~~~~~~~~~~~~~~~~~~~~~~~~~
For those offsets that are anchored to the start or end of specific
frequency (``MonthEnd``, ``MonthBegin``, ``WeekEnd``, etc) the following
rules apply to rolling forward and backwards.
When ``n`` is not 0, if the given date is not on an anchor point, it snapped to the next(previous)
anchor point, and moved ``|n|-1`` additional steps forwards or backwards.
.. ipython:: python
pd.Timestamp('2014-01-02') + MonthBegin(n=1)
pd.Timestamp('2014-01-02') + MonthEnd(n=1)
pd.Timestamp('2014-01-02') - MonthBegin(n=1)
pd.Timestamp('2014-01-02') - MonthEnd(n=1)
pd.Timestamp('2014-01-02') + MonthBegin(n=4)
pd.Timestamp('2014-01-02') - MonthBegin(n=4)
If the given date *is* on an anchor point, it is moved ``|n|`` points forwards
or backwards.
.. ipython:: python
pd.Timestamp('2014-01-01') + MonthBegin(n=1)
pd.Timestamp('2014-01-31') + MonthEnd(n=1)
pd.Timestamp('2014-01-01') - MonthBegin(n=1)
pd.Timestamp('2014-01-31') - MonthEnd(n=1)
pd.Timestamp('2014-01-01') + MonthBegin(n=4)
pd.Timestamp('2014-01-31') - MonthBegin(n=4)
For the case when ``n=0``, the date is not moved if on an anchor point, otherwise
it is rolled forward to the next anchor point.
.. ipython:: python
pd.Timestamp('2014-01-02') + MonthBegin(n=0)
pd.Timestamp('2014-01-02') + MonthEnd(n=0)
pd.Timestamp('2014-01-01') + MonthBegin(n=0)
pd.Timestamp('2014-01-31') + MonthEnd(n=0)
.. _timeseries.holiday:
Holidays / Holiday Calendars
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Holidays and calendars provide a simple way to define holiday rules to be used
with ``CustomBusinessDay`` or in other analysis that requires a predefined
set of holidays. The ``AbstractHolidayCalendar`` class provides all the necessary
methods to return a list of holidays and only ``rules`` need to be defined
in a specific holiday calendar class. Further, ``start_date`` and ``end_date``
class attributes determine over what date range holidays are generated. These
should be overwritten on the ``AbstractHolidayCalendar`` class to have the range
apply to all calendar subclasses. ``USFederalHolidayCalendar`` is the
only calendar that exists and primarily serves as an example for developing
other calendars.
For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an
observance rule determines when that holiday is observed if it falls on a weekend
or some other non-observed day. Defined observance rules are:
.. csv-table::
:header: "Rule", "Description"
:widths: 15, 70
"nearest_workday", "move Saturday to Friday and Sunday to Monday"
"sunday_to_monday", "move Sunday to following Monday"
"next_monday_or_tuesday", "move Saturday to Monday and Sunday/Monday to Tuesday"
"previous_friday", move Saturday and Sunday to previous Friday"
"next_monday", "move Saturday and Sunday to following Monday"
An example of how holidays and holiday calendars are defined:
.. ipython:: python
from pandas.tseries.holiday import Holiday, USMemorialDay,\
AbstractHolidayCalendar, nearest_workday, MO
class ExampleCalendar(AbstractHolidayCalendar):
rules = [
USMemorialDay,
Holiday('July 4th', month=7, day=4, observance=nearest_workday),
Holiday('Columbus Day', month=10, day=1,
offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
]
cal = ExampleCalendar()
cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))
Using this calendar, creating an index or doing offset arithmetic skips weekends
and holidays (i.e., Memorial Day/July 4th). For example, the below defines
a custom business day offset using the ``ExampleCalendar``. Like any other offset,
it can be used to create a ``DatetimeIndex`` or added to ``datetime``
or ``Timestamp`` objects.
.. ipython:: python
from pandas.tseries.offsets import CDay
pd.DatetimeIndex(start='7/1/2012', end='7/10/2012',
freq=CDay(calendar=cal)).to_pydatetime()
offset = CustomBusinessDay(calendar=cal)
datetime(2012, 5, 25) + offset
datetime(2012, 7, 3) + offset
datetime(2012, 7, 3) + 2 * offset
datetime(2012, 7, 6) + offset
Ranges are defined by the ``start_date`` and ``end_date`` class attributes
of ``AbstractHolidayCalendar``. The defaults are below.
.. ipython:: python
AbstractHolidayCalendar.start_date
AbstractHolidayCalendar.end_date
These dates can be overwritten by setting the attributes as
datetime/Timestamp/string.
.. ipython:: python
AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)
AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)
cal.holidays()
Every calendar class is accessible by name using the ``get_calendar`` function
which returns a holiday class instance. Any imported calendar class will
automatically be available by this function. Also, ``HolidayCalendarFactory``
provides an easy interface to create calendars that are combinations of calendars
or calendars with additional rules.
.. ipython:: python
from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,\
USLaborDay
cal = get_calendar('ExampleCalendar')
cal.rules
new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)
new_cal.rules
.. _timeseries.advanced_datetime:
Time series-related instance methods
------------------------------------
Shifting / lagging
~~~~~~~~~~~~~~~~~~
One may want to *shift* or *lag* the values in a time series back and forward in
time. The method for this is ``shift``, which is available on all of the pandas
objects.
.. ipython:: python
ts = ts[:5]
ts.shift(1)
The shift method accepts an ``freq`` argument which can accept a
``DateOffset`` class or other ``timedelta``-like object or also a :ref:`offset alias <timeseries.offset_aliases>`:
.. ipython:: python
ts.shift(5, freq=offsets.BDay())
ts.shift(5, freq='BM')
Rather than changing the alignment of the data and the index, ``DataFrame`` and
``Series`` objects also have a ``tshift`` convenience method that changes
all the dates in the index by a specified number of offsets:
.. ipython:: python
ts.tshift(5, freq='D')
Note that with ``tshift``, the leading entry is no longer NaN because the data
is not being realigned.
Frequency conversion
~~~~~~~~~~~~~~~~~~~~
The primary function for changing frequencies is the ``asfreq`` function.
For a ``DatetimeIndex``, this is basically just a thin, but convenient wrapper
around ``reindex`` which generates a ``date_range`` and calls ``reindex``.
.. ipython:: python
dr = pd.date_range('1/1/2010', periods=3, freq=3 * offsets.BDay())
ts = pd.Series(randn(3), index=dr)
ts
ts.asfreq(BDay())
``asfreq`` provides a further convenience so you can specify an interpolation
method for any gaps that may appear after the frequency conversion
.. ipython:: python
ts.asfreq(BDay(), method='pad')
Filling forward / backward
~~~~~~~~~~~~~~~~~~~~~~~~~~
Related to ``asfreq`` and ``reindex`` is the ``fillna`` function documented in
the :ref:`missing data section <missing_data.fillna>`.
Converting to Python datetimes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``DatetimeIndex`` can be converted to an array of Python native datetime.datetime objects using the
``to_pydatetime`` method.
.. _timeseries.resampling:
Resampling
----------
.. warning::
The interface to ``.resample`` has changed in 0.18.0 to be more groupby-like and hence more flexible.
See the :ref:`whatsnew docs <whatsnew_0180.breaking.resample>` for a comparison with prior versions.
Pandas has a simple, powerful, and efficient functionality for
performing resampling operations during frequency conversion (e.g., converting
secondly data into 5-minutely data). This is extremely common in, but not
limited to, financial applications.
``.resample()`` is a time-based groupby, followed by a reduction method on each of its groups.
Starting in version 0.18.1, the ``resample()`` function can be used directly from
DataFrameGroupBy objects, see the :ref:`groupby docs <groupby.transform.window_resample>`.
.. note::
``.resample()`` is similar to using a ``.rolling()`` operation with a time-based offset, see a discussion `here <stats.moments.ts-versus-resampling>`
See some :ref:`cookbook examples <cookbook.resample>` for some advanced strategies
.. ipython:: python
rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min').sum()
The ``resample`` function is very flexible and allows you to specify many
different parameters to control the frequency conversion and resampling
operation.
The ``how`` parameter can be a function name or numpy array function that takes
an array and produces aggregated values:
.. ipython:: python
ts.resample('5Min').mean()
ts.resample('5Min').ohlc()
ts.resample('5Min').max()
Any function available via :ref:`dispatching <groupby.dispatch>` can be given to
the ``how`` parameter by name, including ``sum``, ``mean``, ``std``, ``sem``,
``max``, ``min``, ``median``, ``first``, ``last``, ``ohlc``.
For downsampling, ``closed`` can be set to 'left' or 'right' to specify which
end of the interval is closed:
.. ipython:: python
ts.resample('5Min', closed='right').mean()
ts.resample('5Min', closed='left').mean()
Parameters like ``label`` and ``loffset`` are used to manipulate the resulting
labels. ``label`` specifies whether the result is labeled with the beginning or
the end of the interval. ``loffset`` performs a time adjustment on the output
labels.
.. ipython:: python
ts.resample('5Min').mean() # by default label='right'
ts.resample('5Min', label='left').mean()
ts.resample('5Min', label='left', loffset='1s').mean()
The ``axis`` parameter can be set to 0 or 1 and allows you to resample the
specified axis for a DataFrame.
``kind`` can be set to 'timestamp' or 'period' to convert the resulting index
to/from time-stamp and time-span representations. By default ``resample``
retains the input representation.
``convention`` can be set to 'start' or 'end' when resampling period data
(detail below). It specifies how low frequency periods are converted to higher
frequency periods.
Up Sampling
~~~~~~~~~~~
For upsampling, you can specify a way to upsample and the ``limit`` parameter to interpolate over the gaps that are created:
.. ipython:: python
# from secondly to every 250 milliseconds
ts[:2].resample('250L').asfreq()
ts[:2].resample('250L').ffill()
ts[:2].resample('250L').ffill(limit=2)
Sparse Resampling
~~~~~~~~~~~~~~~~~
Sparse timeseries are ones where you have a lot fewer points relative
to the amount of time you are looking to resample. Naively upsampling a sparse series can potentially
generate lots of intermediate values. When you don't want to use a method to fill these values, e.g. ``fill_method`` is ``None``,
then intermediate values will be filled with ``NaN``.
Since ``resample`` is a time-based groupby, the following is a method to efficiently
resample only the groups that are not all ``NaN``
.. ipython:: python
rng = pd.date_range('2014-1-1', periods=100, freq='D') + pd.Timedelta('1s')
ts = pd.Series(range(100), index=rng)
If we want to resample to the full range of the series
.. ipython:: python
ts.resample('3T').sum()
We can instead only resample those groups where we have points as follows:
.. ipython:: python
from functools import partial
from pandas.tseries.frequencies import to_offset
def round(t, freq):
# round a Timestamp to a specified freq
freq = to_offset(freq)
return pd.Timestamp((t.value // freq.delta.value) * freq.delta.value)
ts.groupby(partial(round, freq='3T')).sum()
Aggregation
~~~~~~~~~~~
Similar to :ref:`groupby aggregates <groupby.aggregate>` and the :ref:`window functions <stats.aggregate>`, a ``Resampler`` can be selectively
resampled.
Resampling a ``DataFrame``, the default will be to act on all columns with the same function.
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 3),
index=pd.date_range('1/1/2012', freq='S', periods=1000),
columns=['A', 'B', 'C'])
r = df.resample('3T')
r.mean()
We can select a specific column or columns using standard getitem.
.. ipython:: python
r['A'].mean()
r[['A','B']].mean()
You can pass a list or dict of functions to do aggregation with, outputting a DataFrame:
.. ipython:: python
r['A'].agg([np.sum, np.mean, np.std])
If a dict is passed, the keys will be used to name the columns. Otherwise the
function's name (stored in the function object) will be used.
.. ipython:: python
r['A'].agg({'result1' : np.sum,
'result2' : np.mean})
On a resampled DataFrame, you can pass a list of functions to apply to each
column, which produces an aggregated result with a hierarchical index:
.. ipython:: python
r.agg([np.sum, np.mean])
By passing a dict to ``aggregate`` you can apply a different aggregation to the
columns of a DataFrame:
.. ipython:: python
:okexcept:
r.agg({'A' : np.sum,
'B' : lambda x: np.std(x, ddof=1)})
The function names can also be strings. In order for a string to be valid it
must be implemented on the Resampled object
.. ipython:: python
r.agg({'A' : 'sum', 'B' : 'std'})
Furthermore, you can also specify multiple aggregation functions for each column separately.
.. ipython:: python
r.agg({'A' : ['sum','std'], 'B' : ['mean','std'] })
If a ``DataFrame`` does not have a datetimelike index, but instead you want
to resample based on datetimelike column in the frame, it can passed to the
``on`` keyword.
.. ipython:: python
df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
'a': np.arange(5)},
index=pd.MultiIndex.from_arrays([
[1,2,3,4,5],
pd.date_range('2015-01-01', freq='W', periods=5)],
names=['v','d']))
df
df.resample('M', on='date').sum()
Similarly, if you instead want to resample by a datetimelike
level of ``MultiIndex``, its name or location can be passed to the
``level`` keyword.
.. ipython:: python
df.resample('M', level='d').sum()
.. _timeseries.periods:
Time Span Representation
------------------------
Regular intervals of time are represented by ``Period`` objects in pandas while
sequences of ``Period`` objects are collected in a ``PeriodIndex``, which can
be created with the convenience function ``period_range``.
Period
~~~~~~
A ``Period`` represents a span of time (e.g., a day, a month, a quarter, etc).
You can specify the span via ``freq`` keyword using a frequency alias like below.
Because ``freq`` represents a span of ``Period``, it cannot be negative like "-3D".
.. ipython:: python
pd.Period('2012', freq='A-DEC')
pd.Period('2012-1-1', freq='D')
pd.Period('2012-1-1 19:00', freq='H')
pd.Period('2012-1-1 19:00', freq='5H')
Adding and subtracting integers from periods shifts the period by its own
frequency. Arithmetic is not allowed between ``Period`` with different ``freq`` (span).
.. ipython:: python
p = pd.Period('2012', freq='A-DEC')
p + 1
p - 3
p = pd.Period('2012-01', freq='2M')
p + 2
p - 1
@okexcept
p == pd.Period('2012-01', freq='3M')
If ``Period`` freq is daily or higher (``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``), ``offsets`` and ``timedelta``-like can be added if the result can have the same freq. Otherwise, ``ValueError`` will be raised.
.. ipython:: python
p = pd.Period('2014-07-01 09:00', freq='H')
p + Hour(2)
p + timedelta(minutes=120)
p + np.timedelta64(7200, 's')
.. code-block:: ipython
In [1]: p + Minute(5)
Traceback
...
ValueError: Input has different freq from Period(freq=H)
If ``Period`` has other freqs, only the same ``offsets`` can be added. Otherwise, ``ValueError`` will be raised.
.. ipython:: python
p = pd.Period('2014-07', freq='M')
p + MonthEnd(3)
.. code-block:: ipython
In [1]: p + MonthBegin(3)
Traceback
...
ValueError: Input has different freq from Period(freq=M)
Taking the difference of ``Period`` instances with the same frequency will
return the number of frequency units between them:
.. ipython:: python
pd.Period('2012', freq='A-DEC') - pd.Period('2002', freq='A-DEC')
PeriodIndex and period_range
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Regular sequences of ``Period`` objects can be collected in a ``PeriodIndex``,
which can be constructed using the ``period_range`` convenience function:
.. ipython:: python
prng = pd.period_range('1/1/2011', '1/1/2012', freq='M')
prng
The ``PeriodIndex`` constructor can also be used directly:
.. ipython:: python
pd.PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Passing multiplied frequency outputs a sequence of ``Period`` which
has multiplied span.
.. ipython:: python
pd.PeriodIndex(start='2014-01', freq='3M', periods=4)
Just like ``DatetimeIndex``, a ``PeriodIndex`` can also be used to index pandas
objects:
.. ipython:: python
ps = pd.Series(np.random.randn(len(prng)), prng)
ps
``PeriodIndex`` supports addition and subtraction with the same rule as ``Period``.
.. ipython:: python
idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
idx
idx + Hour(2)
idx = pd.period_range('2014-07', periods=5, freq='M')
idx
idx + MonthEnd(3)
``PeriodIndex`` has its own dtype named ``period``, refer to :ref:`Period Dtypes <timeseries.period_dtype>`.
.. _timeseries.period_dtype:
Period Dtypes
~~~~~~~~~~~~~
.. versionadded:: 0.19.0
``PeriodIndex`` has a custom ``period`` dtype. This is a pandas extension
dtype similar to the :ref:`timezone aware dtype <timeseries.timezone_series>` (``datetime64[ns, tz]``).
The ``period`` dtype holds the ``freq`` attribute and is represented with
``period[freq]`` like ``period[D]`` or ``period[M]``, using :ref:`frequency strings <timeseries.offset_aliases>`.
.. ipython:: python
pi = pd.period_range('2016-01-01', periods=3, freq='M')
pi
pi.dtype
The ``period`` dtype can be used in ``.astype(...)``. It allows one to change the
``freq`` of a ``PeriodIndex`` like ``.asfreq()`` and convert a
``DatetimeIndex`` to ``PeriodIndex`` like ``to_period()``:
.. ipython:: python
# change monthly freq to daily freq
pi.astype('period[D]')
# convert to DatetimeIndex
pi.astype('datetime64[ns]')
# convert to PeriodIndex
dti = pd.date_range('2011-01-01', freq='M', periods=3)
dti
dti.astype('period[M]')
PeriodIndex Partial String Indexing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can pass in dates and strings to ``Series`` and ``DataFrame`` with ``PeriodIndex``, in the same manner as ``DatetimeIndex``. For details, refer to :ref:`DatetimeIndex Partial String Indexing <timeseries.partialindexing>`.
.. ipython:: python
ps['2011-01']
ps[datetime(2011, 12, 25):]
ps['10/31/2011':'12/31/2011']
Passing a string representing a lower frequency than ``PeriodIndex`` returns partial sliced data.
.. ipython:: python
ps['2011']
dfp = pd.DataFrame(np.random.randn(600,1),
columns=['A'],
index=pd.period_range('2013-01-01 9:00', periods=600, freq='T'))
dfp
dfp['2013-01-01 10H']
As with ``DatetimeIndex``, the endpoints will be included in the result. The example below slices data starting from 10:00 to 11:59.
.. ipython:: python
dfp['2013-01-01 10H':'2013-01-01 11H']
Frequency Conversion and Resampling with PeriodIndex
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The frequency of ``Period`` and ``PeriodIndex`` can be converted via the ``asfreq``
method. Let's start with the fiscal year 2011, ending in December:
.. ipython:: python
p = pd.Period('2011', freq='A-DEC')
p
We can convert it to a monthly frequency. Using the ``how`` parameter, we can
specify whether to return the starting or ending month:
.. ipython:: python
p.asfreq('M', how='start')
p.asfreq('M', how='end')
The shorthands 's' and 'e' are provided for convenience:
.. ipython:: python
p.asfreq('M', 's')
p.asfreq('M', 'e')
Converting to a "super-period" (e.g., annual frequency is a super-period of
quarterly frequency) automatically returns the super-period that includes the
input period:
.. ipython:: python
p = pd.Period('2011-12', freq='M')
p.asfreq('A-NOV')
Note that since we converted to an annual frequency that ends the year in
November, the monthly period of December 2011 is actually in the 2012 A-NOV
period.
.. _timeseries.quarterly:
Period conversions with anchored frequencies are particularly useful for
working with various quarterly data common to economics, business, and other
fields. Many organizations define quarters relative to the month in which their
fiscal year starts and ends. Thus, first quarter of 2011 could start in 2010 or
a few months into 2011. Via anchored frequencies, pandas works for all quarterly
frequencies ``Q-JAN`` through ``Q-DEC``.
``Q-DEC`` define regular calendar quarters:
.. ipython:: python
p = pd.Period('2012Q1', freq='Q-DEC')
p.asfreq('D', 's')
p.asfreq('D', 'e')
``Q-MAR`` defines fiscal year end in March:
.. ipython:: python
p = pd.Period('2011Q4', freq='Q-MAR')
p.asfreq('D', 's')
p.asfreq('D', 'e')
.. _timeseries.interchange:
Converting between Representations
----------------------------------
Timestamped data can be converted to PeriodIndex-ed data using ``to_period``
and vice-versa using ``to_timestamp``:
.. ipython:: python
rng = pd.date_range('1/1/2012', periods=5, freq='M')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts
ps = ts.to_period()
ps
ps.to_timestamp()
Remember that 's' and 'e' can be used to return the timestamps at the start or
end of the period:
.. ipython:: python
ps.to_timestamp('D', how='s')
Converting between period and timestamp enables some convenient arithmetic
functions to be used. In the following example, we convert a quarterly
frequency with year ending in November to 9am of the end of the month following
the quarter end:
.. ipython:: python
prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
ts = pd.Series(np.random.randn(len(prng)), prng)
ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
ts.head()
.. _timeseries.oob:
Representing out-of-bounds spans
--------------------------------
If you have data that is outside of the ``Timestamp`` bounds, see :ref:`Timestamp limitations <timeseries.timestamp-limits>`,
then you can use a ``PeriodIndex`` and/or ``Series`` of ``Periods`` to do computations.
.. ipython:: python
span = pd.period_range('1215-01-01', '1381-01-01', freq='D')
span
To convert from a ``int64`` based YYYYMMDD representation.
.. ipython:: python
s = pd.Series([20121231, 20141130, 99991231])
s
def conv(x):
return pd.Period(year = x // 10000, month = x//100 % 100, day = x%100, freq='D')
s.apply(conv)
s.apply(conv)[2]
These can easily be converted to a ``PeriodIndex``
.. ipython:: python
span = pd.PeriodIndex(s.apply(conv))
span
.. _timeseries.timezone:
Time Zone Handling
------------------
Pandas provides rich support for working with timestamps in different time zones using ``pytz`` and ``dateutil`` libraries.
``dateutil`` support is new in 0.14.1 and currently only supported for fixed offset and tzfile zones. The default library is ``pytz``.
Support for ``dateutil`` is provided for compatibility with other applications e.g. if you use ``dateutil`` in other python packages.
Working with Time Zones
~~~~~~~~~~~~~~~~~~~~~~~
By default, pandas objects are time zone unaware:
.. ipython:: python
rng = pd.date_range('3/6/2012 00:00', periods=15, freq='D')
rng.tz is None
To supply the time zone, you can use the ``tz`` keyword to ``date_range`` and
other functions. Dateutil time zone strings are distinguished from ``pytz``
time zones by starting with ``dateutil/``.
- In ``pytz`` you can find a list of common (and less common) time zones using
``from pytz import common_timezones, all_timezones``.
- ``dateutil`` uses the OS timezones so there isn't a fixed list available. For
common zones, the names are the same as ``pytz``.
.. ipython:: python
# pytz
rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
tz='Europe/London')
rng_pytz.tz
# dateutil
rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
tz='dateutil/Europe/London')
rng_dateutil.tz
# dateutil - utc special case
rng_utc = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
tz=dateutil.tz.tzutc())
rng_utc.tz
Note that the ``UTC`` timezone is a special case in ``dateutil`` and should be constructed explicitly
as an instance of ``dateutil.tz.tzutc``. You can also construct other timezones explicitly first,
which gives you more control over which time zone is used:
.. ipython:: python
# pytz
tz_pytz = pytz.timezone('Europe/London')
rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
tz=tz_pytz)
rng_pytz.tz == tz_pytz
# dateutil
tz_dateutil = dateutil.tz.gettz('Europe/London')
rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
tz=tz_dateutil)
rng_dateutil.tz == tz_dateutil
Timestamps, like Python's ``datetime.datetime`` object can be either time zone
naive or time zone aware. Naive time series and DatetimeIndex objects can be
*localized* using ``tz_localize``:
.. ipython:: python
ts = pd.Series(np.random.randn(len(rng)), rng)
ts_utc = ts.tz_localize('UTC')
ts_utc
Again, you can explicitly construct the timezone object first.
You can use the ``tz_convert`` method to convert pandas objects to convert
tz-aware data to another time zone:
.. ipython:: python
ts_utc.tz_convert('US/Eastern')
.. warning::
Be wary of conversions between libraries. For some zones ``pytz`` and ``dateutil`` have different
definitions of the zone. This is more of a problem for unusual timezones than for
'standard' zones like ``US/Eastern``.
.. warning::
Be aware that a timezone definition across versions of timezone libraries may not
be considered equal. This may cause problems when working with stored data that
is localized using one version and operated on with a different version.
See :ref:`here<io.hdf5-notes>` for how to handle such a situation.
.. warning::
It is incorrect to pass a timezone directly into the ``datetime.datetime`` constructor (e.g.,
``datetime.datetime(2011, 1, 1, tz=timezone('US/Eastern'))``. Instead, the datetime
needs to be localized using the the localize method on the timezone.
Under the hood, all timestamps are stored in UTC. Scalar values from a
``DatetimeIndex`` with a time zone will have their fields (day, hour, minute)
localized to the time zone. However, timestamps with the same UTC value are
still considered to be equal even if they are in different time zones:
.. ipython:: python
rng_eastern = rng_utc.tz_convert('US/Eastern')
rng_berlin = rng_utc.tz_convert('Europe/Berlin')
rng_eastern[5]
rng_berlin[5]
rng_eastern[5] == rng_berlin[5]
Like ``Series``, ``DataFrame``, and ``DatetimeIndex``, ``Timestamp``s can be converted to other
time zones using ``tz_convert``:
.. ipython:: python
rng_eastern[5]
rng_berlin[5]
rng_eastern[5].tz_convert('Europe/Berlin')
Localization of ``Timestamp`` functions just like ``DatetimeIndex`` and ``Series``:
.. ipython:: python
rng[5]
rng[5].tz_localize('Asia/Shanghai')
Operations between Series in different time zones will yield UTC
Series, aligning the data on the UTC timestamps:
.. ipython:: python
eastern = ts_utc.tz_convert('US/Eastern')
berlin = ts_utc.tz_convert('Europe/Berlin')
result = eastern + berlin
result
result.index
To remove timezone from tz-aware ``DatetimeIndex``, use ``tz_localize(None)`` or ``tz_convert(None)``.
``tz_localize(None)`` will remove timezone holding local time representations.
``tz_convert(None)`` will remove timezone after converting to UTC time.
.. ipython:: python
didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
didx
didx.tz_localize(None)
didx.tz_convert(None)
# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
didx.tz_convert('UCT').tz_localize(None)
.. _timeseries.timezone_ambiguous:
Ambiguous Times when Localizing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In some cases, localize cannot determine the DST and non-DST hours when there are
duplicates. This often happens when reading files or database records that simply
duplicate the hours. Passing ``ambiguous='infer'`` (``infer_dst`` argument in prior
releases) into ``tz_localize`` will attempt to determine the right offset. Below
the top example will fail as it contains ambiguous times and the bottom will
infer the right offset.
.. ipython:: python
rng_hourly = pd.DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
'11/06/2011 01:00', '11/06/2011 02:00',
'11/06/2011 03:00'])
This will fail as there are ambiguous times
.. code-block:: ipython
In [2]: rng_hourly.tz_localize('US/Eastern')
AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try using the 'ambiguous' argument
Infer the ambiguous times
.. ipython:: python
rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')
rng_hourly_eastern.tolist()
In addition to 'infer', there are several other arguments supported. Passing
an array-like of bools or 0s/1s where True represents a DST hour and False a
non-DST hour, allows for distinguishing more than one DST
transition (e.g., if you have multiple records in a database each with their
own DST transition). Or passing 'NaT' will fill in transition times
with not-a-time values. These methods are available in the ``DatetimeIndex``
constructor as well as ``tz_localize``.
.. ipython:: python
rng_hourly_dst = np.array([1, 1, 0, 0, 0])
rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()
rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()
didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
didx
didx.tz_localize(None)
didx.tz_convert(None)
# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
didx.tz_convert('UCT').tz_localize(None)
.. _timeseries.timezone_series:
TZ aware Dtypes
~~~~~~~~~~~~~~~
.. versionadded:: 0.17.0
``Series/DatetimeIndex`` with a timezone **naive** value are represented with a dtype of ``datetime64[ns]``.
.. ipython:: python
s_naive = pd.Series(pd.date_range('20130101',periods=3))
s_naive
``Series/DatetimeIndex`` with a timezone **aware** value are represented with a dtype of ``datetime64[ns, tz]``.
.. ipython:: python
s_aware = pd.Series(pd.date_range('20130101',periods=3,tz='US/Eastern'))
s_aware
Both of these ``Series`` can be manipulated via the ``.dt`` accessor, see :ref:`here <basics.dt_accessors>`.
For example, to localize and convert a naive stamp to timezone aware.
.. ipython:: python
s_naive.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Further more you can ``.astype(...)`` timezone aware (and naive). This operation is effectively a localize AND convert on a naive stamp, and
a convert on an aware stamp.
.. ipython:: python
# localize and convert a naive timezone
s_naive.astype('datetime64[ns, US/Eastern]')
# make an aware tz naive
s_aware.astype('datetime64[ns]')
# convert to a new timezone
s_aware.astype('datetime64[ns, CET]')
.. note::
Using the ``.values`` accessor on a ``Series``, returns an numpy array of the data.
These values are converted to UTC, as numpy does not currently support timezones (even though it is *printing* in the local timezone!).
.. ipython:: python
s_naive.values
s_aware.values
Further note that once converted to a numpy array these would lose the tz tenor.
.. ipython:: python
pd.Series(s_aware.values)
However, these can be easily converted
.. ipython:: python
pd.Series(s_aware.values).dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
|