File: timeseries.rst

package info (click to toggle)
pandas 0.19.2-5.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 101,196 kB
  • ctags: 83,045
  • sloc: python: 210,909; ansic: 12,582; sh: 501; makefile: 130
file content (2115 lines) | stat: -rw-r--r-- 67,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
.. currentmodule:: pandas
.. _timeseries:

.. ipython:: python
   :suppress:

   from datetime import datetime, timedelta, time
   import numpy as np
   import pandas as pd
   from pandas import offsets
   np.random.seed(123456)
   randn = np.random.randn
   randint = np.random.randint
   np.set_printoptions(precision=4, suppress=True)
   pd.options.display.max_rows=15
   import dateutil
   import pytz
   from dateutil.relativedelta import relativedelta

********************************
Time Series / Date functionality
********************************

pandas has proven very successful as a tool for working with time series data,
especially in the financial data analysis space. Using the NumPy ``datetime64`` and ``timedelta64`` dtypes,
we have consolidated a large number of features from other Python libraries like ``scikits.timeseries`` as well as created
a tremendous amount of new functionality for manipulating time series data.

In working with time series data, we will frequently seek to:

  - generate sequences of fixed-frequency dates and time spans
  - conform or convert time series to a particular frequency
  - compute "relative" dates based on various non-standard time increments
    (e.g. 5 business days before the last business day of the year), or "roll"
    dates forward or backward

pandas provides a relatively compact and self-contained set of tools for
performing the above tasks.

Create a range of dates:

.. ipython:: python

   # 72 hours starting with midnight Jan 1st, 2011
   rng = pd.date_range('1/1/2011', periods=72, freq='H')
   rng[:5]

Index pandas objects with dates:

.. ipython:: python

   ts = pd.Series(np.random.randn(len(rng)), index=rng)
   ts.head()

Change frequency and fill gaps:

.. ipython:: python

   # to 45 minute frequency and forward fill
   converted = ts.asfreq('45Min', method='pad')
   converted.head()

Resample:

.. ipython:: python

   # Daily means
   ts.resample('D').mean()


.. _timeseries.overview:

Overview
--------

Following table shows the type of time-related classes pandas can handle and
how to create them.

=================  =============================== ==================================================
Class              Remarks                         How to create
=================  =============================== ==================================================
``Timestamp``      Represents a single time stamp   ``to_datetime``, ``Timestamp``
``DatetimeIndex``  Index of ``Timestamp``          ``to_datetime``, ``date_range``, ``DatetimeIndex``
``Period``         Represents a single time span   ``Period``
``PeriodIndex``    Index of ``Period``             ``period_range``, ``PeriodIndex``
=================  =============================== ==================================================

.. _timeseries.representation:

Time Stamps vs. Time Spans
--------------------------

Time-stamped data is the most basic type of timeseries data that associates
values with points in time. For pandas objects it means using the points in
time.

.. ipython:: python

   pd.Timestamp(datetime(2012, 5, 1))
   pd.Timestamp('2012-05-01')
   pd.Timestamp(2012, 5, 1)

However, in many cases it is more natural to associate things like change
variables with a time span instead. The span represented by ``Period`` can be
specified explicitly, or inferred from datetime string format.

For example:

.. ipython:: python

   pd.Period('2011-01')

   pd.Period('2012-05', freq='D')

``Timestamp`` and ``Period`` can be the index. Lists of ``Timestamp`` and
``Period`` are automatically coerce to ``DatetimeIndex`` and ``PeriodIndex``
respectively.

.. ipython:: python

   dates = [pd.Timestamp('2012-05-01'), pd.Timestamp('2012-05-02'), pd.Timestamp('2012-05-03')]
   ts = pd.Series(np.random.randn(3), dates)

   type(ts.index)
   ts.index

   ts

   periods = [pd.Period('2012-01'), pd.Period('2012-02'), pd.Period('2012-03')]

   ts = pd.Series(np.random.randn(3), periods)

   type(ts.index)
   ts.index

   ts

pandas allows you to capture both representations and
convert between them. Under the hood, pandas represents timestamps using
instances of ``Timestamp`` and sequences of timestamps using instances of
``DatetimeIndex``. For regular time spans, pandas uses ``Period`` objects for
scalar values and ``PeriodIndex`` for sequences of spans. Better support for
irregular intervals with arbitrary start and end points are forth-coming in
future releases.


.. _timeseries.converting:

Converting to Timestamps
------------------------

To convert a Series or list-like object of date-like objects e.g. strings,
epochs, or a mixture, you can use the ``to_datetime`` function. When passed
a Series, this returns a Series (with the same index), while a list-like
is converted to a DatetimeIndex:

.. ipython:: python

    pd.to_datetime(pd.Series(['Jul 31, 2009', '2010-01-10', None]))

    pd.to_datetime(['2005/11/23', '2010.12.31'])

If you use dates which start with the day first (i.e. European style),
you can pass the ``dayfirst`` flag:

.. ipython:: python

    pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)

    pd.to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)

.. warning::

   You see in the above example that ``dayfirst`` isn't strict, so if a date
   can't be parsed with the day being first it will be parsed as if
   ``dayfirst`` were False.

.. note::
   Specifying a ``format`` argument will potentially speed up the conversion
   considerably and on versions later then 0.13.0 explicitly specifying
   a format string of '%Y%m%d' takes a faster path still.

If you pass a single string to ``to_datetime``, it returns single ``Timestamp``.
Also, ``Timestamp`` can accept the string input.
Note that ``Timestamp`` doesn't accept string parsing option like ``dayfirst``
or ``format``, use ``to_datetime`` if these are required.

.. ipython:: python

    pd.to_datetime('2010/11/12')

    pd.Timestamp('2010/11/12')

.. versionadded:: 0.18.1

You can also pass a ``DataFrame`` of integer or string columns to assemble into a ``Series`` of ``Timestamps``.

.. ipython:: python

   df = pd.DataFrame({'year': [2015, 2016],
                      'month': [2, 3],
                      'day': [4, 5],
                      'hour': [2, 3]})
   pd.to_datetime(df)


You can pass only the columns that you need to assemble.

.. ipython:: python

   pd.to_datetime(df[['year', 'month', 'day']])

``pd.to_datetime`` looks for standard designations of the datetime component in the column names, including:

- required: ``year``, ``month``, ``day``
- optional: ``hour``, ``minute``, ``second``, ``millisecond``, ``microsecond``, ``nanosecond``

Invalid Data
~~~~~~~~~~~~

.. note::

   In version 0.17.0, the default for ``to_datetime`` is now ``errors='raise'``, rather than ``errors='ignore'``. This means
   that invalid parsing will raise rather that return the original input as in previous versions.

Pass ``errors='coerce'`` to convert invalid data to ``NaT`` (not a time):

Raise when unparseable, this is the default

.. code-block:: ipython

    In [2]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
    ValueError: Unknown string format

Return the original input when unparseable

.. code-block:: ipython

    In [4]: pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
    Out[4]: array(['2009/07/31', 'asd'], dtype=object)

Return NaT for input when unparseable

.. code-block:: ipython

    In [6]: pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
    Out[6]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)


Epoch Timestamps
~~~~~~~~~~~~~~~~

It's also possible to convert integer or float epoch times. The default unit
for these is nanoseconds (since these are how ``Timestamp`` s are stored). However,
often epochs are stored in another ``unit`` which can be specified:

Typical epoch stored units

.. ipython:: python

   pd.to_datetime([1349720105, 1349806505, 1349892905,
                   1349979305, 1350065705], unit='s')

   pd.to_datetime([1349720105100, 1349720105200, 1349720105300,
                   1349720105400, 1349720105500 ], unit='ms')

These *work*, but the results may be unexpected.

.. ipython:: python

   pd.to_datetime([1])

   pd.to_datetime([1, 3.14], unit='s')

.. note::

   Epoch times will be rounded to the nearest nanosecond.

.. _timeseries.daterange:

Generating Ranges of Timestamps
-------------------------------

To generate an index with time stamps, you can use either the DatetimeIndex or
Index constructor and pass in a list of datetime objects:

.. ipython:: python

   dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]

   # Note the frequency information
   index = pd.DatetimeIndex(dates)
   index

   # Automatically converted to DatetimeIndex
   index = pd.Index(dates)
   index

Practically, this becomes very cumbersome because we often need a very long
index with a large number of timestamps. If we need timestamps on a regular
frequency, we can use the pandas functions ``date_range`` and ``bdate_range``
to create timestamp indexes.

.. ipython:: python

   index = pd.date_range('2000-1-1', periods=1000, freq='M')
   index

   index = pd.bdate_range('2012-1-1', periods=250)
   index

Convenience functions like ``date_range`` and ``bdate_range`` utilize a
variety of frequency aliases. The default frequency for ``date_range`` is a
**calendar day** while the default for ``bdate_range`` is a **business day**

.. ipython:: python

   start = datetime(2011, 1, 1)
   end = datetime(2012, 1, 1)

   rng = pd.date_range(start, end)
   rng

   rng = pd.bdate_range(start, end)
   rng

``date_range`` and ``bdate_range`` make it easy to generate a range of dates
using various combinations of parameters like ``start``, ``end``,
``periods``, and ``freq``:

.. ipython:: python

   pd.date_range(start, end, freq='BM')

   pd.date_range(start, end, freq='W')

   pd.bdate_range(end=end, periods=20)

   pd.bdate_range(start=start, periods=20)

The start and end dates are strictly inclusive. So it will not generate any
dates outside of those dates if specified.

.. _timeseries.timestamp-limits:

Timestamp limitations
---------------------

Since pandas represents timestamps in nanosecond resolution, the timespan that
can be represented using a 64-bit integer is limited to approximately 584 years:

.. ipython:: python

   pd.Timestamp.min
   pd.Timestamp.max

See :ref:`here <timeseries.oob>` for ways to represent data outside these bound.

.. _timeseries.datetimeindex:

DatetimeIndex
-------------

One of the main uses for ``DatetimeIndex`` is as an index for pandas objects.
The ``DatetimeIndex`` class contains many timeseries related optimizations:

  - A large range of dates for various offsets are pre-computed and cached
    under the hood in order to make generating subsequent date ranges very fast
    (just have to grab a slice)
  - Fast shifting using the ``shift`` and ``tshift`` method on pandas objects
  - Unioning of overlapping DatetimeIndex objects with the same frequency is
    very fast (important for fast data alignment)
  - Quick access to date fields via properties such as ``year``, ``month``, etc.
  - Regularization functions like ``snap`` and very fast ``asof`` logic

DatetimeIndex objects has all the basic functionality of regular Index objects
and a smorgasbord of advanced timeseries-specific methods for easy frequency
processing.

.. seealso::
    :ref:`Reindexing methods <basics.reindexing>`

.. note::

    While pandas does not force you to have a sorted date index, some of these
    methods may have unexpected or incorrect behavior if the dates are
    unsorted. So please be careful.

``DatetimeIndex`` can be used like a regular index and offers all of its
intelligent functionality like selection, slicing, etc.

.. ipython:: python

   rng = pd.date_range(start, end, freq='BM')
   ts = pd.Series(np.random.randn(len(rng)), index=rng)
   ts.index
   ts[:5].index
   ts[::2].index

.. _timeseries.partialindexing:

DatetimeIndex Partial String Indexing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can pass in dates and strings that parse to dates as indexing parameters:

.. ipython:: python

   ts['1/31/2011']

   ts[datetime(2011, 12, 25):]

   ts['10/31/2011':'12/31/2011']

To provide convenience for accessing longer time series, you can also pass in
the year or year and month as strings:

.. ipython:: python

   ts['2011']

   ts['2011-6']

This type of slicing will work on a DataFrame with a ``DateTimeIndex`` as well. Since the
partial string selection is a form of label slicing, the endpoints **will be** included. This
would include matching times on an included date. Here's an example:

.. ipython:: python

   dft = pd.DataFrame(randn(100000,1),
                      columns=['A'],
                      index=pd.date_range('20130101',periods=100000,freq='T'))
   dft
   dft['2013']

This starts on the very first time in the month, and includes the last date & time for the month

.. ipython:: python

   dft['2013-1':'2013-2']

This specifies a stop time **that includes all of the times on the last day**

.. ipython:: python

   dft['2013-1':'2013-2-28']

This specifies an **exact** stop time (and is not the same as the above)

.. ipython:: python

   dft['2013-1':'2013-2-28 00:00:00']

We are stopping on the included end-point as it is part of the index

.. ipython:: python

   dft['2013-1-15':'2013-1-15 12:30:00']

.. warning::

   The following selection will raise a ``KeyError``; otherwise this selection methodology
   would be inconsistent with other selection methods in pandas (as this is not a *slice*, nor does it
   resolve to one)

   .. code-block:: python

      dft['2013-1-15 12:30:00']

   To select a single row, use ``.loc``

   .. ipython:: python

      dft.loc['2013-1-15 12:30:00']

.. versionadded:: 0.18.0

DatetimeIndex Partial String Indexing also works on DataFrames with a ``MultiIndex``. For example:

.. ipython:: python

   dft2 = pd.DataFrame(np.random.randn(20, 1),
                       columns=['A'],
                       index=pd.MultiIndex.from_product([pd.date_range('20130101',
                                                                       periods=10,
                                                                       freq='12H'),
                                                        ['a', 'b']]))
   dft2
   dft2.loc['2013-01-05']
   idx = pd.IndexSlice
   dft2 = dft2.swaplevel(0, 1).sort_index()
   dft2.loc[idx[:, '2013-01-05'], :]

Datetime Indexing
~~~~~~~~~~~~~~~~~

Indexing a ``DateTimeIndex`` with a partial string depends on the "accuracy" of the period, in other words how specific the interval is in relation to the frequency of the index. In contrast, indexing with datetime objects is exact, because the objects have exact meaning. These also follow the semantics of *including both endpoints*.

These ``datetime`` objects  are specific ``hours, minutes,`` and ``seconds`` even though they were not explicitly specified (they are ``0``).

.. ipython:: python

   dft[datetime(2013, 1, 1):datetime(2013,2,28)]

With no defaults.

.. ipython:: python

   dft[datetime(2013, 1, 1, 10, 12, 0):datetime(2013, 2, 28, 10, 12, 0)]


Truncating & Fancy Indexing
~~~~~~~~~~~~~~~~~~~~~~~~~~~

A ``truncate`` convenience function is provided that is equivalent to slicing:

.. ipython:: python

   ts.truncate(before='10/31/2011', after='12/31/2011')

Even complicated fancy indexing that breaks the DatetimeIndex's frequency
regularity will result in a ``DatetimeIndex`` (but frequency is lost):

.. ipython:: python

   ts[[0, 2, 6]].index

.. _timeseries.offsets:

Time/Date Components
~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are several time/date properties that one can access from ``Timestamp`` or a collection of timestamps like a ``DateTimeIndex``.

.. csv-table::
    :header: "Property", "Description"
    :widths: 15, 65

    year, "The year of the datetime"
    month,"The month of the datetime"
    day,"The days of the datetime"
    hour,"The hour of the datetime"
    minute,"The minutes of the datetime"
    second,"The seconds of the datetime"
    microsecond,"The microseconds of the datetime"
    nanosecond,"The nanoseconds of the datetime"
    date,"Returns datetime.date (does not contain timezone information)"
    time,"Returns datetime.time (does not contain timezone information)"
    dayofyear,"The ordinal day of year"
    weekofyear,"The week ordinal of the year"
    week,"The week ordinal of the year"
    dayofweek,"The numer of the day of the week with Monday=0, Sunday=6"
    weekday,"The number of the day of the week with Monday=0, Sunday=6"
    weekday_name,"The name of the day in a week (ex: Friday)"
    quarter,"Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc."
    days_in_month,"The number of days in the month of the datetime"
    is_month_start,"Logical indicating if first day of month (defined by frequency)"
    is_month_end,"Logical indicating if last day of month (defined by frequency)"
    is_quarter_start,"Logical indicating if first day of quarter (defined by frequency)"
    is_quarter_end,"Logical indicating if last day of quarter (defined by frequency)"
    is_year_start,"Logical indicating if first day of year (defined by frequency)"
    is_year_end,"Logical indicating if last day of year (defined by frequency)"
    is_leap_year,"Logical indicating if the date belongs to a leap year"

Furthermore, if you have a ``Series`` with datetimelike values, then you can access these properties via the ``.dt`` accessor, see the :ref:`docs <basics.dt_accessors>`

DateOffset objects
------------------

In the preceding examples, we created DatetimeIndex objects at various
frequencies by passing in :ref:`frequency strings <timeseries.offset_aliases>`
like 'M', 'W', and 'BM to the ``freq`` keyword. Under the hood, these frequency
strings are being translated into an instance of pandas ``DateOffset``,
which represents a regular frequency increment. Specific offset logic like
"month", "business day", or "one hour" is represented in its various subclasses.

.. csv-table::
    :header: "Class name", "Description"
    :widths: 15, 65

    DateOffset, "Generic offset class, defaults to 1 calendar day"
    BDay, "business day (weekday)"
    CDay, "custom business day (experimental)"
    Week, "one week, optionally anchored on a day of the week"
    WeekOfMonth, "the x-th day of the y-th week of each month"
    LastWeekOfMonth, "the x-th day of the last week of each month"
    MonthEnd, "calendar month end"
    MonthBegin, "calendar month begin"
    BMonthEnd, "business month end"
    BMonthBegin, "business month begin"
    CBMonthEnd, "custom business month end"
    CBMonthBegin, "custom business month begin"
    SemiMonthEnd, "15th (or other day_of_month) and calendar month end"
    SemiMonthBegin, "15th (or other day_of_month) and calendar month begin"
    QuarterEnd, "calendar quarter end"
    QuarterBegin, "calendar quarter begin"
    BQuarterEnd, "business quarter end"
    BQuarterBegin, "business quarter begin"
    FY5253Quarter, "retail (aka 52-53 week) quarter"
    YearEnd, "calendar year end"
    YearBegin, "calendar year begin"
    BYearEnd, "business year end"
    BYearBegin, "business year begin"
    FY5253, "retail (aka 52-53 week) year"
    BusinessHour, "business hour"
    CustomBusinessHour, "custom business hour"
    Hour, "one hour"
    Minute, "one minute"
    Second, "one second"
    Milli, "one millisecond"
    Micro, "one microsecond"
    Nano, "one nanosecond"

The basic ``DateOffset`` takes the same arguments as
``dateutil.relativedelta``, which works like:

.. ipython:: python

   d = datetime(2008, 8, 18, 9, 0)
   d + relativedelta(months=4, days=5)

We could have done the same thing with ``DateOffset``:

.. ipython:: python

   from pandas.tseries.offsets import *
   d + DateOffset(months=4, days=5)

The key features of a ``DateOffset`` object are:

  - it can be added / subtracted to/from a datetime object to obtain a
    shifted date
  - it can be multiplied by an integer (positive or negative) so that the
    increment will be applied multiple times
  - it has ``rollforward`` and ``rollback`` methods for moving a date forward
    or backward to the next or previous "offset date"

Subclasses of ``DateOffset`` define the ``apply`` function which dictates
custom date increment logic, such as adding business days:

.. code-block:: python

    class BDay(DateOffset):
	"""DateOffset increments between business days"""
        def apply(self, other):
            ...

.. ipython:: python

   d - 5 * BDay()
   d + BMonthEnd()

The ``rollforward`` and ``rollback`` methods do exactly what you would expect:

.. ipython:: python

   d
   offset = BMonthEnd()
   offset.rollforward(d)
   offset.rollback(d)

It's definitely worth exploring the ``pandas.tseries.offsets`` module and the
various docstrings for the classes.

These operations (``apply``, ``rollforward`` and ``rollback``) preserves time (hour, minute, etc) information by default. To reset time, use ``normalize=True`` keyword when creating the offset instance. If ``normalize=True``, result is normalized after the function is applied.


.. ipython:: python

   day = Day()
   day.apply(pd.Timestamp('2014-01-01 09:00'))

   day = Day(normalize=True)
   day.apply(pd.Timestamp('2014-01-01 09:00'))

   hour = Hour()
   hour.apply(pd.Timestamp('2014-01-01 22:00'))

   hour = Hour(normalize=True)
   hour.apply(pd.Timestamp('2014-01-01 22:00'))
   hour.apply(pd.Timestamp('2014-01-01 23:00'))


Parametric offsets
~~~~~~~~~~~~~~~~~~

Some of the offsets can be "parameterized" when created to result in different
behaviors. For example, the ``Week`` offset for generating weekly data accepts a
``weekday`` parameter which results in the generated dates always lying on a
particular day of the week:

.. ipython:: python

   d
   d + Week()
   d + Week(weekday=4)
   (d + Week(weekday=4)).weekday()

   d - Week()

``normalize`` option will be effective for addition and subtraction.

.. ipython:: python

   d + Week(normalize=True)
   d - Week(normalize=True)


Another example is parameterizing ``YearEnd`` with the specific ending month:

.. ipython:: python

   d + YearEnd()
   d + YearEnd(month=6)


.. _timeseries.offsetseries:

Using offsets with ``Series`` / ``DatetimeIndex``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Offsets can be used with either a ``Series`` or ``DatetimeIndex`` to
apply the offset to each element.

.. ipython:: python

   rng = pd.date_range('2012-01-01', '2012-01-03')
   s = pd.Series(rng)
   rng
   rng + DateOffset(months=2)
   s + DateOffset(months=2)
   s - DateOffset(months=2)

If the offset class maps directly to a ``Timedelta`` (``Day``, ``Hour``,
``Minute``, ``Second``, ``Micro``, ``Milli``, ``Nano``) it can be
used exactly like a ``Timedelta`` - see the
:ref:`Timedelta section<timedeltas.operations>` for more examples.

.. ipython:: python

   s - Day(2)
   td = s - pd.Series(pd.date_range('2011-12-29', '2011-12-31'))
   td
   td + Minute(15)

Note that some offsets (such as ``BQuarterEnd``) do not have a
vectorized implementation.  They can still be used but may
calculate significantly slower and will raise a ``PerformanceWarning``

.. ipython:: python
   :okwarning:

   rng + BQuarterEnd()


.. _timeseries.custombusinessdays:

Custom Business Days (Experimental)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``CDay`` or ``CustomBusinessDay`` class provides a parametric
``BusinessDay`` class which can be used to create customized business day
calendars which account for local holidays and local weekend conventions.

As an interesting example, let's look at Egypt where a Friday-Saturday weekend is observed.

.. ipython:: python

    from pandas.tseries.offsets import CustomBusinessDay
    weekmask_egypt = 'Sun Mon Tue Wed Thu'

    # They also observe International Workers' Day so let's
    # add that for a couple of years

    holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]
    bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)
    dt = datetime(2013, 4, 30)
    dt + 2 * bday_egypt

Let's map to the weekday names

.. ipython:: python

    dts = pd.date_range(dt, periods=5, freq=bday_egypt)

    pd.Series(dts.weekday, dts).map(pd.Series('Mon Tue Wed Thu Fri Sat Sun'.split()))

As of v0.14 holiday calendars can be used to provide the list of holidays.  See the
:ref:`holiday calendar<timeseries.holiday>` section for more information.

.. ipython:: python

    from pandas.tseries.holiday import USFederalHolidayCalendar

    bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())

    # Friday before MLK Day
    dt = datetime(2014, 1, 17)

    # Tuesday after MLK Day (Monday is skipped because it's a holiday)
    dt + bday_us

Monthly offsets that respect a certain holiday calendar can be defined
in the usual way.

.. ipython:: python

    from pandas.tseries.offsets import CustomBusinessMonthBegin
    bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

    # Skip new years
    dt = datetime(2013, 12, 17)
    dt + bmth_us

    # Define date index with custom offset
    pd.DatetimeIndex(start='20100101',end='20120101',freq=bmth_us)

.. note::

    The frequency string 'C' is used to indicate that a CustomBusinessDay
    DateOffset is used, it is important to note that since CustomBusinessDay is
    a parameterised type, instances of CustomBusinessDay may differ and this is
    not detectable from the 'C' frequency string. The user therefore needs to
    ensure that the 'C' frequency string is used consistently within the user's
    application.

.. _timeseries.businesshour:

Business Hour
~~~~~~~~~~~~~

The ``BusinessHour`` class provides a business hour representation on ``BusinessDay``,
allowing to use specific start and end times.

By default, ``BusinessHour`` uses 9:00 - 17:00 as business hours.
Adding ``BusinessHour`` will increment ``Timestamp`` by hourly.
If target ``Timestamp`` is out of business hours, move to the next business hour then increment it.
If the result exceeds the business hours end, remaining is added to the next business day.

.. ipython:: python

    bh = BusinessHour()
    bh

    # 2014-08-01 is Friday
    pd.Timestamp('2014-08-01 10:00').weekday()
    pd.Timestamp('2014-08-01 10:00') + bh

    # Below example is the same as: pd.Timestamp('2014-08-01 09:00') + bh
    pd.Timestamp('2014-08-01 08:00') + bh

    # If the results is on the end time, move to the next business day
    pd.Timestamp('2014-08-01 16:00') + bh

    # Remainings are added to the next day
    pd.Timestamp('2014-08-01 16:30') + bh

    # Adding 2 business hours
    pd.Timestamp('2014-08-01 10:00') + BusinessHour(2)

    # Subtracting 3 business hours
    pd.Timestamp('2014-08-01 10:00') + BusinessHour(-3)

Also, you can specify ``start`` and ``end`` time by keywords.
Argument must be ``str`` which has ``hour:minute`` representation or ``datetime.time`` instance.
Specifying seconds, microseconds and nanoseconds as business hour results in ``ValueError``.

.. ipython:: python

    bh = BusinessHour(start='11:00', end=time(20, 0))
    bh

    pd.Timestamp('2014-08-01 13:00') + bh
    pd.Timestamp('2014-08-01 09:00') + bh
    pd.Timestamp('2014-08-01 18:00') + bh

Passing ``start`` time later than ``end`` represents midnight business hour.
In this case, business hour exceeds midnight and overlap to the next day.
Valid business hours are distinguished by whether it started from valid ``BusinessDay``.

.. ipython:: python

    bh = BusinessHour(start='17:00', end='09:00')
    bh

    pd.Timestamp('2014-08-01 17:00') + bh
    pd.Timestamp('2014-08-01 23:00') + bh

    # Although 2014-08-02 is Satuaday,
    # it is valid because it starts from 08-01 (Friday).
    pd.Timestamp('2014-08-02 04:00') + bh

    # Although 2014-08-04 is Monday,
    # it is out of business hours because it starts from 08-03 (Sunday).
    pd.Timestamp('2014-08-04 04:00') + bh

Applying ``BusinessHour.rollforward`` and ``rollback`` to out of business hours results in
the next business hour start or previous day's end. Different from other offsets, ``BusinessHour.rollforward``
may output different results from ``apply`` by definition.

This is because one day's business hour end is equal to next day's business hour start. For example,
under the default business hours (9:00 - 17:00), there is no gap (0 minutes) between ``2014-08-01 17:00`` and
``2014-08-04 09:00``.

.. ipython:: python

    # This adjusts a Timestamp to business hour edge
    BusinessHour().rollback(pd.Timestamp('2014-08-02 15:00'))
    BusinessHour().rollforward(pd.Timestamp('2014-08-02 15:00'))

    # It is the same as BusinessHour().apply(pd.Timestamp('2014-08-01 17:00')).
    # And it is the same as BusinessHour().apply(pd.Timestamp('2014-08-04 09:00'))
    BusinessHour().apply(pd.Timestamp('2014-08-02 15:00'))

    # BusinessDay results (for reference)
    BusinessHour().rollforward(pd.Timestamp('2014-08-02'))

    # It is the same as BusinessDay().apply(pd.Timestamp('2014-08-01'))
    # The result is the same as rollworward because BusinessDay never overlap.
    BusinessHour().apply(pd.Timestamp('2014-08-02'))

``BusinessHour`` regards Saturday and Sunday as holidays. To use arbitrary holidays,
you can use ``CustomBusinessHour`` offset, see :ref:`Custom Business Hour <timeseries.custombusinesshour>`:

.. _timeseries.custombusinesshour:

Custom Business Hour
~~~~~~~~~~~~~~~~~~~~

.. versionadded:: 0.18.1

The ``CustomBusinessHour`` is a mixture of ``BusinessHour`` and ``CustomBusinessDay`` which
allows you to specify arbitrary holidays. ``CustomBusinessHour`` works as the same
as ``BusinessHour`` except that it skips specified custom holidays.

.. ipython:: python

    from pandas.tseries.holiday import USFederalHolidayCalendar
    bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
    # Friday before MLK Day
    dt = datetime(2014, 1, 17, 15)

    dt + bhour_us

    # Tuesday after MLK Day (Monday is skipped because it's a holiday)
    dt + bhour_us * 2

You can use keyword arguments suported by either ``BusinessHour`` and ``CustomBusinessDay``.

.. ipython:: python

    bhour_mon = CustomBusinessHour(start='10:00', weekmask='Tue Wed Thu Fri')

    # Monday is skipped because it's a holiday, business hour starts from 10:00
    dt + bhour_mon * 2

.. _timeseries.offset_aliases:

Offset Aliases
~~~~~~~~~~~~~~

A number of string aliases are given to useful common time series
frequencies. We will refer to these aliases as *offset aliases*
(referred to as *time rules* prior to v0.8.0).

.. csv-table::
    :header: "Alias", "Description"
    :widths: 15, 100

    "B", "business day frequency"
    "C", "custom business day frequency (experimental)"
    "D", "calendar day frequency"
    "W", "weekly frequency"
    "M", "month end frequency"
    "SM", "semi-month end frequency (15th and end of month)"
    "BM", "business month end frequency"
    "CBM", "custom business month end frequency"
    "MS", "month start frequency"
    "SMS", "semi-month start frequency (1st and 15th)"
    "BMS", "business month start frequency"
    "CBMS", "custom business month start frequency"
    "Q", "quarter end frequency"
    "BQ", "business quarter endfrequency"
    "QS", "quarter start frequency"
    "BQS", "business quarter start frequency"
    "A", "year end frequency"
    "BA", "business year end frequency"
    "AS", "year start frequency"
    "BAS", "business year start frequency"
    "BH", "business hour frequency"
    "H", "hourly frequency"
    "T, min", "minutely frequency"
    "S", "secondly frequency"
    "L, ms", "milliseconds"
    "U, us", "microseconds"
    "N", "nanoseconds"

Combining Aliases
~~~~~~~~~~~~~~~~~

As we have seen previously, the alias and the offset instance are fungible in
most functions:

.. ipython:: python

   pd.date_range(start, periods=5, freq='B')

   pd.date_range(start, periods=5, freq=BDay())

You can combine together day and intraday offsets:

.. ipython:: python

   pd.date_range(start, periods=10, freq='2h20min')

   pd.date_range(start, periods=10, freq='1D10U')

Anchored Offsets
~~~~~~~~~~~~~~~~

For some frequencies you can specify an anchoring suffix:

.. csv-table::
    :header: "Alias", "Description"
    :widths: 15, 100

    "W\-SUN", "weekly frequency (sundays). Same as 'W'"
    "W\-MON", "weekly frequency (mondays)"
    "W\-TUE", "weekly frequency (tuesdays)"
    "W\-WED", "weekly frequency (wednesdays)"
    "W\-THU", "weekly frequency (thursdays)"
    "W\-FRI", "weekly frequency (fridays)"
    "W\-SAT", "weekly frequency (saturdays)"
    "(B)Q(S)\-DEC", "quarterly frequency, year ends in December. Same as 'Q'"
    "(B)Q(S)\-JAN", "quarterly frequency, year ends in January"
    "(B)Q(S)\-FEB", "quarterly frequency, year ends in February"
    "(B)Q(S)\-MAR", "quarterly frequency, year ends in March"
    "(B)Q(S)\-APR", "quarterly frequency, year ends in April"
    "(B)Q(S)\-MAY", "quarterly frequency, year ends in May"
    "(B)Q(S)\-JUN", "quarterly frequency, year ends in June"
    "(B)Q(S)\-JUL", "quarterly frequency, year ends in July"
    "(B)Q(S)\-AUG", "quarterly frequency, year ends in August"
    "(B)Q(S)\-SEP", "quarterly frequency, year ends in September"
    "(B)Q(S)\-OCT", "quarterly frequency, year ends in October"
    "(B)Q(S)\-NOV", "quarterly frequency, year ends in November"
    "(B)A(S)\-DEC", "annual frequency, anchored end of December. Same as 'A'"
    "(B)A(S)\-JAN", "annual frequency, anchored end of January"
    "(B)A(S)\-FEB", "annual frequency, anchored end of February"
    "(B)A(S)\-MAR", "annual frequency, anchored end of March"
    "(B)A(S)\-APR", "annual frequency, anchored end of April"
    "(B)A(S)\-MAY", "annual frequency, anchored end of May"
    "(B)A(S)\-JUN", "annual frequency, anchored end of June"
    "(B)A(S)\-JUL", "annual frequency, anchored end of July"
    "(B)A(S)\-AUG", "annual frequency, anchored end of August"
    "(B)A(S)\-SEP", "annual frequency, anchored end of September"
    "(B)A(S)\-OCT", "annual frequency, anchored end of October"
    "(B)A(S)\-NOV", "annual frequency, anchored end of November"

These can be used as arguments to ``date_range``, ``bdate_range``, constructors
for ``DatetimeIndex``, as well as various other timeseries-related functions
in pandas.

Anchored Offset Semantics
~~~~~~~~~~~~~~~~~~~~~~~~~

For those offsets that are anchored to the start or end of specific
frequency (``MonthEnd``, ``MonthBegin``, ``WeekEnd``, etc) the following
rules apply to rolling forward and backwards.

When ``n`` is not 0, if the given date is not on an anchor point, it snapped to the next(previous)
anchor point, and moved ``|n|-1`` additional steps forwards or backwards.

.. ipython:: python

   pd.Timestamp('2014-01-02') + MonthBegin(n=1)
   pd.Timestamp('2014-01-02') + MonthEnd(n=1)

   pd.Timestamp('2014-01-02') - MonthBegin(n=1)
   pd.Timestamp('2014-01-02') - MonthEnd(n=1)

   pd.Timestamp('2014-01-02') + MonthBegin(n=4)
   pd.Timestamp('2014-01-02') - MonthBegin(n=4)

If the given date *is* on an anchor point, it is moved ``|n|`` points forwards
or backwards.

.. ipython:: python

   pd.Timestamp('2014-01-01') + MonthBegin(n=1)
   pd.Timestamp('2014-01-31') + MonthEnd(n=1)

   pd.Timestamp('2014-01-01') - MonthBegin(n=1)
   pd.Timestamp('2014-01-31') - MonthEnd(n=1)

   pd.Timestamp('2014-01-01') + MonthBegin(n=4)
   pd.Timestamp('2014-01-31') - MonthBegin(n=4)

For the case when ``n=0``, the date is not moved if on an anchor point, otherwise
it is rolled forward to the next anchor point.

.. ipython:: python

   pd.Timestamp('2014-01-02') + MonthBegin(n=0)
   pd.Timestamp('2014-01-02') + MonthEnd(n=0)

   pd.Timestamp('2014-01-01') + MonthBegin(n=0)
   pd.Timestamp('2014-01-31') + MonthEnd(n=0)

.. _timeseries.holiday:

Holidays / Holiday Calendars
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Holidays and calendars provide a simple way to define holiday rules to be used
with ``CustomBusinessDay`` or in other analysis that requires a predefined
set of holidays.  The ``AbstractHolidayCalendar`` class provides all the necessary
methods to return a list of holidays and only ``rules`` need to be defined
in a specific holiday calendar class.  Further, ``start_date`` and ``end_date``
class attributes determine over what date range holidays are generated.  These
should be overwritten on the ``AbstractHolidayCalendar`` class to have the range
apply to all calendar subclasses.  ``USFederalHolidayCalendar`` is the
only calendar that exists and primarily serves as an example for developing
other calendars.

For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an
observance rule determines when that holiday is observed if it falls on a weekend
or some other non-observed day.  Defined observance rules are:

.. csv-table::
    :header: "Rule", "Description"
    :widths: 15, 70

    "nearest_workday", "move Saturday to Friday and Sunday to Monday"
    "sunday_to_monday", "move Sunday to following Monday"
    "next_monday_or_tuesday", "move Saturday to Monday and Sunday/Monday to Tuesday"
    "previous_friday", move Saturday and Sunday to previous Friday"
    "next_monday", "move Saturday and Sunday to following Monday"

An example of how holidays and holiday calendars are defined:

.. ipython:: python

    from pandas.tseries.holiday import Holiday, USMemorialDay,\
        AbstractHolidayCalendar, nearest_workday, MO
    class ExampleCalendar(AbstractHolidayCalendar):
        rules = [
            USMemorialDay,
            Holiday('July 4th', month=7, day=4, observance=nearest_workday),
            Holiday('Columbus Day', month=10, day=1,
                offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
            ]
    cal = ExampleCalendar()
    cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))

Using this calendar, creating an index or doing offset arithmetic skips weekends
and holidays (i.e., Memorial Day/July 4th).  For example, the below defines
a custom business day offset using the ``ExampleCalendar``.  Like any other offset,
it can be used to create a ``DatetimeIndex`` or added to ``datetime``
or ``Timestamp`` objects.

.. ipython:: python

    from pandas.tseries.offsets import CDay
    pd.DatetimeIndex(start='7/1/2012', end='7/10/2012',
        freq=CDay(calendar=cal)).to_pydatetime()
    offset = CustomBusinessDay(calendar=cal)
    datetime(2012, 5, 25) + offset
    datetime(2012, 7, 3) + offset
    datetime(2012, 7, 3) + 2 * offset
    datetime(2012, 7, 6) + offset

Ranges are defined by the ``start_date`` and ``end_date`` class attributes
of ``AbstractHolidayCalendar``.  The defaults are below.

.. ipython:: python

    AbstractHolidayCalendar.start_date
    AbstractHolidayCalendar.end_date

These dates can be overwritten by setting the attributes as
datetime/Timestamp/string.

.. ipython:: python

    AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)
    AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)
    cal.holidays()

Every calendar class is accessible by name using the ``get_calendar`` function
which returns a holiday class instance.  Any imported calendar class will
automatically be available by this function.  Also, ``HolidayCalendarFactory``
provides an easy interface to create calendars that are combinations of calendars
or calendars with additional rules.

.. ipython:: python

    from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,\
        USLaborDay
    cal = get_calendar('ExampleCalendar')
    cal.rules
    new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)
    new_cal.rules

.. _timeseries.advanced_datetime:

Time series-related instance methods
------------------------------------

Shifting / lagging
~~~~~~~~~~~~~~~~~~

One may want to *shift* or *lag* the values in a time series back and forward in
time. The method for this is ``shift``, which is available on all of the pandas
objects.

.. ipython:: python

   ts = ts[:5]
   ts.shift(1)

The shift method accepts an ``freq`` argument which can accept a
``DateOffset`` class or other ``timedelta``-like object or also a :ref:`offset alias <timeseries.offset_aliases>`:

.. ipython:: python

   ts.shift(5, freq=offsets.BDay())
   ts.shift(5, freq='BM')

Rather than changing the alignment of the data and the index, ``DataFrame`` and
``Series`` objects also have a ``tshift`` convenience method that changes
all the dates in the index by a specified number of offsets:

.. ipython:: python

   ts.tshift(5, freq='D')

Note that with ``tshift``, the leading entry is no longer NaN because the data
is not being realigned.

Frequency conversion
~~~~~~~~~~~~~~~~~~~~

The primary function for changing frequencies is the ``asfreq`` function.
For a ``DatetimeIndex``, this is basically just a thin, but convenient wrapper
around ``reindex`` which generates a ``date_range`` and calls ``reindex``.

.. ipython:: python

   dr = pd.date_range('1/1/2010', periods=3, freq=3 * offsets.BDay())
   ts = pd.Series(randn(3), index=dr)
   ts
   ts.asfreq(BDay())

``asfreq`` provides a further convenience so you can specify an interpolation
method for any gaps that may appear after the frequency conversion

.. ipython:: python

   ts.asfreq(BDay(), method='pad')

Filling forward / backward
~~~~~~~~~~~~~~~~~~~~~~~~~~

Related to ``asfreq`` and ``reindex`` is the ``fillna`` function documented in
the :ref:`missing data section <missing_data.fillna>`.

Converting to Python datetimes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``DatetimeIndex`` can be converted to an array of Python native datetime.datetime objects using the
``to_pydatetime`` method.

.. _timeseries.resampling:

Resampling
----------

.. warning::

   The interface to ``.resample`` has changed in 0.18.0 to be more groupby-like and hence more flexible.
   See the :ref:`whatsnew docs <whatsnew_0180.breaking.resample>` for a comparison with prior versions.

Pandas has a simple, powerful, and efficient functionality for
performing resampling operations during frequency conversion (e.g., converting
secondly data into 5-minutely data). This is extremely common in, but not
limited to, financial applications.

``.resample()`` is a time-based groupby, followed by a reduction method on each of its groups.

Starting in version 0.18.1, the ``resample()`` function can be used directly from
DataFrameGroupBy objects, see the :ref:`groupby docs <groupby.transform.window_resample>`.

.. note::

   ``.resample()`` is similar to using a ``.rolling()`` operation with a time-based offset, see a discussion `here <stats.moments.ts-versus-resampling>`

See some :ref:`cookbook examples <cookbook.resample>` for some advanced strategies

.. ipython:: python

   rng = pd.date_range('1/1/2012', periods=100, freq='S')

   ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

   ts.resample('5Min').sum()

The ``resample`` function is very flexible and allows you to specify many
different parameters to control the frequency conversion and resampling
operation.

The ``how`` parameter can be a function name or numpy array function that takes
an array and produces aggregated values:

.. ipython:: python

   ts.resample('5Min').mean()

   ts.resample('5Min').ohlc()

   ts.resample('5Min').max()

Any function available via :ref:`dispatching <groupby.dispatch>` can be given to
the ``how`` parameter by name, including ``sum``, ``mean``, ``std``, ``sem``,
``max``, ``min``, ``median``, ``first``, ``last``, ``ohlc``.

For downsampling, ``closed`` can be set to 'left' or 'right' to specify which
end of the interval is closed:

.. ipython:: python

   ts.resample('5Min', closed='right').mean()

   ts.resample('5Min', closed='left').mean()

Parameters like ``label`` and ``loffset`` are used to manipulate the resulting
labels. ``label`` specifies whether the result is labeled with the beginning or
the end of the interval. ``loffset`` performs a time adjustment on the output
labels.

.. ipython:: python

   ts.resample('5Min').mean() # by default label='right'

   ts.resample('5Min', label='left').mean()

   ts.resample('5Min', label='left', loffset='1s').mean()

The ``axis`` parameter can be set to 0 or 1 and allows you to resample the
specified axis for a DataFrame.

``kind`` can be set to 'timestamp' or 'period' to convert the resulting index
to/from time-stamp and time-span representations. By default ``resample``
retains the input representation.

``convention`` can be set to 'start' or 'end' when resampling period data
(detail below). It specifies how low frequency periods are converted to higher
frequency periods.


Up Sampling
~~~~~~~~~~~

For upsampling, you can specify a way to upsample and the ``limit`` parameter to interpolate over the gaps that are created:

.. ipython:: python

   # from secondly to every 250 milliseconds

   ts[:2].resample('250L').asfreq()

   ts[:2].resample('250L').ffill()

   ts[:2].resample('250L').ffill(limit=2)

Sparse Resampling
~~~~~~~~~~~~~~~~~

Sparse timeseries are ones where you have a lot fewer points relative
to the amount of time you are looking to resample. Naively upsampling a sparse series can potentially
generate lots of intermediate values. When you don't want to use a method to fill these values, e.g. ``fill_method`` is ``None``,
then intermediate values will be filled with ``NaN``.

Since ``resample`` is a time-based groupby, the following is a method to efficiently
resample only the groups that are not all ``NaN``

.. ipython:: python

    rng = pd.date_range('2014-1-1', periods=100, freq='D') + pd.Timedelta('1s')
    ts = pd.Series(range(100), index=rng)

If we want to resample to the full range of the series

.. ipython:: python

    ts.resample('3T').sum()

We can instead only resample those groups where we have points as follows:

.. ipython:: python

    from functools import partial
    from pandas.tseries.frequencies import to_offset

    def round(t, freq):
        # round a Timestamp to a specified freq
        freq = to_offset(freq)
        return pd.Timestamp((t.value // freq.delta.value) * freq.delta.value)

    ts.groupby(partial(round, freq='3T')).sum()

Aggregation
~~~~~~~~~~~

Similar to :ref:`groupby aggregates <groupby.aggregate>` and the :ref:`window functions <stats.aggregate>`, a ``Resampler`` can be selectively
resampled.

Resampling a ``DataFrame``, the default will be to act on all columns with the same function.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(1000, 3),
                     index=pd.date_range('1/1/2012', freq='S', periods=1000),
                     columns=['A', 'B', 'C'])
   r = df.resample('3T')
   r.mean()

We can select a specific column or columns using standard getitem.

.. ipython:: python

   r['A'].mean()

   r[['A','B']].mean()

You can pass a list or dict of functions to do aggregation with, outputting a DataFrame:

.. ipython:: python

   r['A'].agg([np.sum, np.mean, np.std])

If a dict is passed, the keys will be used to name the columns. Otherwise the
function's name (stored in the function object) will be used.

.. ipython:: python

   r['A'].agg({'result1' : np.sum,
               'result2' : np.mean})

On a resampled DataFrame, you can pass a list of functions to apply to each
column, which produces an aggregated result with a hierarchical index:

.. ipython:: python

   r.agg([np.sum, np.mean])

By passing a dict to ``aggregate`` you can apply a different aggregation to the
columns of a DataFrame:

.. ipython:: python
   :okexcept:

   r.agg({'A' : np.sum,
          'B' : lambda x: np.std(x, ddof=1)})

The function names can also be strings. In order for a string to be valid it
must be implemented on the Resampled object

.. ipython:: python

   r.agg({'A' : 'sum', 'B' : 'std'})

Furthermore, you can also specify multiple aggregation functions for each column separately.

.. ipython:: python

   r.agg({'A' : ['sum','std'], 'B' : ['mean','std'] })


If a ``DataFrame`` does not have a datetimelike index, but instead you want
to resample based on datetimelike column in the frame, it can passed to the
``on`` keyword.

.. ipython:: python

   df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
                      'a': np.arange(5)},
                     index=pd.MultiIndex.from_arrays([
                              [1,2,3,4,5],
                              pd.date_range('2015-01-01', freq='W', periods=5)],
                          names=['v','d']))
   df
   df.resample('M', on='date').sum()

Similarly, if you instead want to resample by a datetimelike
level of ``MultiIndex``, its name or location can be passed to the
``level`` keyword.

.. ipython:: python

   df.resample('M', level='d').sum()


.. _timeseries.periods:

Time Span Representation
------------------------

Regular intervals of time are represented by ``Period`` objects in pandas while
sequences of ``Period`` objects are collected in a ``PeriodIndex``, which can
be created with the convenience function ``period_range``.

Period
~~~~~~

A ``Period`` represents a span of time (e.g., a day, a month, a quarter, etc).
You can specify the span via ``freq`` keyword using a frequency alias like below.
Because ``freq`` represents a span of ``Period``, it cannot be negative like "-3D".

.. ipython:: python

   pd.Period('2012', freq='A-DEC')

   pd.Period('2012-1-1', freq='D')

   pd.Period('2012-1-1 19:00', freq='H')

   pd.Period('2012-1-1 19:00', freq='5H')

Adding and subtracting integers from periods shifts the period by its own
frequency. Arithmetic is not allowed between ``Period`` with different ``freq`` (span).

.. ipython:: python

   p = pd.Period('2012', freq='A-DEC')
   p + 1
   p - 3
   p = pd.Period('2012-01', freq='2M')
   p + 2
   p - 1
   @okexcept
   p == pd.Period('2012-01', freq='3M')


If ``Period`` freq is daily or higher (``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``), ``offsets`` and ``timedelta``-like can be added if the result can have the same freq. Otherwise, ``ValueError`` will be raised.

.. ipython:: python

   p = pd.Period('2014-07-01 09:00', freq='H')
   p + Hour(2)
   p + timedelta(minutes=120)
   p + np.timedelta64(7200, 's')

.. code-block:: ipython

   In [1]: p + Minute(5)
   Traceback
      ...
   ValueError: Input has different freq from Period(freq=H)

If ``Period`` has other freqs, only the same ``offsets`` can be added. Otherwise, ``ValueError`` will be raised.

.. ipython:: python

   p = pd.Period('2014-07', freq='M')
   p + MonthEnd(3)

.. code-block:: ipython

   In [1]: p + MonthBegin(3)
   Traceback
      ...
   ValueError: Input has different freq from Period(freq=M)

Taking the difference of ``Period`` instances with the same frequency will
return the number of frequency units between them:

.. ipython:: python

   pd.Period('2012', freq='A-DEC') - pd.Period('2002', freq='A-DEC')

PeriodIndex and period_range
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Regular sequences of ``Period`` objects can be collected in a ``PeriodIndex``,
which can be constructed using the ``period_range`` convenience function:

.. ipython:: python

   prng = pd.period_range('1/1/2011', '1/1/2012', freq='M')
   prng

The ``PeriodIndex`` constructor can also be used directly:

.. ipython:: python

   pd.PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')

Passing multiplied frequency outputs a sequence of ``Period`` which
has multiplied span.

.. ipython:: python

   pd.PeriodIndex(start='2014-01', freq='3M', periods=4)

Just like ``DatetimeIndex``, a ``PeriodIndex`` can also be used to index pandas
objects:

.. ipython:: python

   ps = pd.Series(np.random.randn(len(prng)), prng)
   ps

``PeriodIndex`` supports addition and subtraction with the same rule as ``Period``.

.. ipython:: python

   idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
   idx
   idx + Hour(2)

   idx = pd.period_range('2014-07', periods=5, freq='M')
   idx
   idx + MonthEnd(3)

``PeriodIndex`` has its own dtype named ``period``, refer to :ref:`Period Dtypes <timeseries.period_dtype>`.

.. _timeseries.period_dtype:

Period Dtypes
~~~~~~~~~~~~~

.. versionadded:: 0.19.0

``PeriodIndex`` has a custom ``period`` dtype. This is a pandas extension
dtype similar to the :ref:`timezone aware dtype <timeseries.timezone_series>` (``datetime64[ns, tz]``).

The ``period`` dtype holds the ``freq`` attribute and is represented with
``period[freq]`` like ``period[D]`` or ``period[M]``, using :ref:`frequency strings <timeseries.offset_aliases>`.

.. ipython:: python

   pi = pd.period_range('2016-01-01', periods=3, freq='M')
   pi
   pi.dtype

The ``period`` dtype can be used in ``.astype(...)``. It allows one to change the
``freq`` of a ``PeriodIndex`` like ``.asfreq()`` and convert a
``DatetimeIndex`` to ``PeriodIndex`` like ``to_period()``:

.. ipython:: python

   # change monthly freq to daily freq
   pi.astype('period[D]')

   # convert to DatetimeIndex
   pi.astype('datetime64[ns]')

   # convert to PeriodIndex
   dti = pd.date_range('2011-01-01', freq='M', periods=3)
   dti
   dti.astype('period[M]')


PeriodIndex Partial String Indexing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can pass in dates and strings to ``Series`` and ``DataFrame`` with ``PeriodIndex``, in the same manner as ``DatetimeIndex``. For details, refer to :ref:`DatetimeIndex Partial String Indexing <timeseries.partialindexing>`.

.. ipython:: python

   ps['2011-01']

   ps[datetime(2011, 12, 25):]

   ps['10/31/2011':'12/31/2011']

Passing a string representing a lower frequency than ``PeriodIndex`` returns partial sliced data.

.. ipython:: python

   ps['2011']

   dfp = pd.DataFrame(np.random.randn(600,1),
                      columns=['A'],
                      index=pd.period_range('2013-01-01 9:00', periods=600, freq='T'))
   dfp
   dfp['2013-01-01 10H']

As with ``DatetimeIndex``, the endpoints will be included in the result. The example below slices data starting from 10:00 to 11:59.

.. ipython:: python

   dfp['2013-01-01 10H':'2013-01-01 11H']

Frequency Conversion and Resampling with PeriodIndex
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The frequency of ``Period`` and ``PeriodIndex`` can be converted via the ``asfreq``
method. Let's start with the fiscal year 2011, ending in December:

.. ipython:: python

   p = pd.Period('2011', freq='A-DEC')
   p

We can convert it to a monthly frequency. Using the ``how`` parameter, we can
specify whether to return the starting or ending month:

.. ipython:: python

   p.asfreq('M', how='start')

   p.asfreq('M', how='end')

The shorthands 's' and 'e' are provided for convenience:

.. ipython:: python

   p.asfreq('M', 's')
   p.asfreq('M', 'e')

Converting to a "super-period" (e.g., annual frequency is a super-period of
quarterly frequency) automatically returns the super-period that includes the
input period:

.. ipython:: python

   p = pd.Period('2011-12', freq='M')

   p.asfreq('A-NOV')

Note that since we converted to an annual frequency that ends the year in
November, the monthly period of December 2011 is actually in the 2012 A-NOV
period.

.. _timeseries.quarterly:

Period conversions with anchored frequencies are particularly useful for
working with various quarterly data common to economics, business, and other
fields. Many organizations define quarters relative to the month in which their
fiscal year starts and ends. Thus, first quarter of 2011 could start in 2010 or
a few months into 2011. Via anchored frequencies, pandas works for all quarterly
frequencies ``Q-JAN`` through ``Q-DEC``.

``Q-DEC`` define regular calendar quarters:

.. ipython:: python

   p = pd.Period('2012Q1', freq='Q-DEC')

   p.asfreq('D', 's')

   p.asfreq('D', 'e')

``Q-MAR`` defines fiscal year end in March:

.. ipython:: python

   p = pd.Period('2011Q4', freq='Q-MAR')

   p.asfreq('D', 's')

   p.asfreq('D', 'e')

.. _timeseries.interchange:

Converting between Representations
----------------------------------

Timestamped data can be converted to PeriodIndex-ed data using ``to_period``
and vice-versa using ``to_timestamp``:

.. ipython:: python

   rng = pd.date_range('1/1/2012', periods=5, freq='M')

   ts = pd.Series(np.random.randn(len(rng)), index=rng)

   ts

   ps = ts.to_period()

   ps

   ps.to_timestamp()

Remember that 's' and 'e' can be used to return the timestamps at the start or
end of the period:

.. ipython:: python

   ps.to_timestamp('D', how='s')

Converting between period and timestamp enables some convenient arithmetic
functions to be used. In the following example, we convert a quarterly
frequency with year ending in November to 9am of the end of the month following
the quarter end:

.. ipython:: python

   prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

   ts = pd.Series(np.random.randn(len(prng)), prng)

   ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

   ts.head()

.. _timeseries.oob:

Representing out-of-bounds spans
--------------------------------

If you have data that is outside of the ``Timestamp`` bounds, see :ref:`Timestamp limitations <timeseries.timestamp-limits>`,
then you can use a ``PeriodIndex`` and/or ``Series`` of ``Periods`` to do computations.

.. ipython:: python

   span = pd.period_range('1215-01-01', '1381-01-01', freq='D')
   span

To convert from a ``int64`` based YYYYMMDD representation.

.. ipython:: python

   s = pd.Series([20121231, 20141130, 99991231])
   s

   def conv(x):
       return pd.Period(year = x // 10000, month = x//100 % 100, day = x%100, freq='D')

   s.apply(conv)
   s.apply(conv)[2]

These can easily be converted to a ``PeriodIndex``

.. ipython:: python

   span = pd.PeriodIndex(s.apply(conv))
   span

.. _timeseries.timezone:

Time Zone Handling
------------------

Pandas provides rich support for working with timestamps in different time zones using ``pytz`` and ``dateutil`` libraries.
``dateutil`` support is new in 0.14.1 and currently only supported for fixed offset and tzfile zones. The default library is ``pytz``.
Support for ``dateutil`` is provided for compatibility with other applications e.g. if you use ``dateutil`` in other python packages.

Working with Time Zones
~~~~~~~~~~~~~~~~~~~~~~~

By default, pandas objects are time zone unaware:

.. ipython:: python

   rng = pd.date_range('3/6/2012 00:00', periods=15, freq='D')
   rng.tz is None

To supply the time zone, you can use the ``tz`` keyword to ``date_range`` and
other functions. Dateutil time zone strings are distinguished from ``pytz``
time zones by starting with ``dateutil/``.

- In ``pytz`` you can find a list of common (and less common) time zones using
  ``from pytz import common_timezones, all_timezones``.
- ``dateutil`` uses the OS timezones so there isn't a fixed list available. For
  common zones, the names are the same as ``pytz``.

.. ipython:: python

   # pytz
   rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
                            tz='Europe/London')
   rng_pytz.tz

   # dateutil
   rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
                                tz='dateutil/Europe/London')
   rng_dateutil.tz

   # dateutil - utc special case
   rng_utc = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
                           tz=dateutil.tz.tzutc())
   rng_utc.tz

Note that the ``UTC`` timezone is a special case in ``dateutil`` and should be constructed explicitly
as an instance of ``dateutil.tz.tzutc``. You can also construct other timezones explicitly first,
which gives you more control over which time zone is used:

.. ipython:: python

   # pytz
   tz_pytz = pytz.timezone('Europe/London')
   rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
                            tz=tz_pytz)
   rng_pytz.tz == tz_pytz

   # dateutil
   tz_dateutil = dateutil.tz.gettz('Europe/London')
   rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
                                tz=tz_dateutil)
   rng_dateutil.tz == tz_dateutil

Timestamps, like Python's ``datetime.datetime`` object can be either time zone
naive or time zone aware. Naive time series and DatetimeIndex objects can be
*localized* using ``tz_localize``:

.. ipython:: python

   ts = pd.Series(np.random.randn(len(rng)), rng)

   ts_utc = ts.tz_localize('UTC')
   ts_utc

Again, you can explicitly construct the timezone object first.
You can use the ``tz_convert`` method to convert pandas objects to convert
tz-aware data to another time zone:

.. ipython:: python

   ts_utc.tz_convert('US/Eastern')

.. warning::

	Be wary of conversions between libraries. For some zones ``pytz`` and ``dateutil`` have different
	definitions of the zone. This is more of a problem for unusual timezones than for
	'standard' zones like ``US/Eastern``.

.. warning::

       Be aware that a timezone definition across versions of timezone libraries may not
       be considered equal.  This may cause problems when working with stored data that
       is localized using one version and operated on with a different version.
       See :ref:`here<io.hdf5-notes>` for how to handle such a situation.

.. warning::

       It is incorrect to pass a timezone directly into the ``datetime.datetime`` constructor (e.g.,
       ``datetime.datetime(2011, 1, 1, tz=timezone('US/Eastern'))``.  Instead, the datetime
       needs to be localized using the the localize method on the timezone.

Under the hood, all timestamps are stored in UTC. Scalar values from a
``DatetimeIndex`` with a time zone will have their fields (day, hour, minute)
localized to the time zone. However, timestamps with the same UTC value are
still considered to be equal even if they are in different time zones:

.. ipython:: python

   rng_eastern = rng_utc.tz_convert('US/Eastern')
   rng_berlin = rng_utc.tz_convert('Europe/Berlin')

   rng_eastern[5]
   rng_berlin[5]
   rng_eastern[5] == rng_berlin[5]

Like ``Series``, ``DataFrame``, and ``DatetimeIndex``, ``Timestamp``s can be converted to other
time zones using ``tz_convert``:

.. ipython:: python

   rng_eastern[5]
   rng_berlin[5]
   rng_eastern[5].tz_convert('Europe/Berlin')

Localization of ``Timestamp`` functions just like ``DatetimeIndex`` and ``Series``:

.. ipython:: python

   rng[5]
   rng[5].tz_localize('Asia/Shanghai')


Operations between Series in different time zones will yield UTC
Series, aligning the data on the UTC timestamps:

.. ipython:: python

   eastern = ts_utc.tz_convert('US/Eastern')
   berlin = ts_utc.tz_convert('Europe/Berlin')
   result = eastern + berlin
   result
   result.index

To remove timezone from tz-aware ``DatetimeIndex``, use ``tz_localize(None)`` or ``tz_convert(None)``.
``tz_localize(None)`` will remove timezone holding local time representations.
``tz_convert(None)`` will remove timezone after converting to UTC time.

.. ipython:: python

   didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
   didx
   didx.tz_localize(None)
   didx.tz_convert(None)

   # tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
   didx.tz_convert('UCT').tz_localize(None)

.. _timeseries.timezone_ambiguous:

Ambiguous Times when Localizing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In some cases, localize cannot determine the DST and non-DST hours when there are
duplicates.  This often happens when reading files or database records that simply
duplicate the hours.  Passing ``ambiguous='infer'`` (``infer_dst`` argument in prior
releases) into ``tz_localize`` will attempt to determine the right offset.  Below
the top example will fail as it contains ambiguous times and the bottom will
infer the right offset.

.. ipython:: python

   rng_hourly = pd.DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
                                  '11/06/2011 01:00', '11/06/2011 02:00',
                                  '11/06/2011 03:00'])

This will fail as there are ambiguous times

.. code-block:: ipython

   In [2]: rng_hourly.tz_localize('US/Eastern')
   AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try using the 'ambiguous' argument

Infer the ambiguous times

.. ipython:: python

   rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')
   rng_hourly_eastern.tolist()

In addition to 'infer', there are several other arguments supported.  Passing
an array-like of bools or 0s/1s where True represents a DST hour and False a
non-DST hour, allows for distinguishing more than one DST
transition (e.g., if you have multiple records in a database each with their
own DST transition).  Or passing 'NaT' will fill in transition times
with not-a-time values.  These methods are available in the ``DatetimeIndex``
constructor as well as ``tz_localize``.

.. ipython:: python

   rng_hourly_dst = np.array([1, 1, 0, 0, 0])
   rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()
   rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()

   didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
   didx
   didx.tz_localize(None)
   didx.tz_convert(None)

   # tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
   didx.tz_convert('UCT').tz_localize(None)

.. _timeseries.timezone_series:

TZ aware Dtypes
~~~~~~~~~~~~~~~

.. versionadded:: 0.17.0

``Series/DatetimeIndex`` with a timezone **naive** value are represented with a dtype of ``datetime64[ns]``.

.. ipython:: python

   s_naive = pd.Series(pd.date_range('20130101',periods=3))
   s_naive

``Series/DatetimeIndex`` with a timezone **aware** value are represented with a dtype of ``datetime64[ns, tz]``.

.. ipython:: python

   s_aware = pd.Series(pd.date_range('20130101',periods=3,tz='US/Eastern'))
   s_aware

Both of these ``Series`` can be manipulated via the ``.dt`` accessor, see :ref:`here <basics.dt_accessors>`.

For example, to localize and convert a naive stamp to timezone aware.

.. ipython:: python

   s_naive.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')


Further more you can ``.astype(...)`` timezone aware (and naive). This operation is effectively a localize AND convert on a naive stamp, and
a convert on an aware stamp.

.. ipython:: python

   # localize and convert a naive timezone
   s_naive.astype('datetime64[ns, US/Eastern]')

   # make an aware tz naive
   s_aware.astype('datetime64[ns]')

   # convert to a new timezone
   s_aware.astype('datetime64[ns, CET]')

.. note::

   Using the ``.values`` accessor on a ``Series``, returns an numpy array of the data.
   These values are converted to UTC, as numpy does not currently support timezones (even though it is *printing* in the local timezone!).

   .. ipython:: python

      s_naive.values
      s_aware.values

   Further note that once converted to a numpy array these would lose the tz tenor.

   .. ipython:: python

      pd.Series(s_aware.values)

   However, these can be easily converted

   .. ipython:: python

      pd.Series(s_aware.values).dt.tz_localize('UTC').dt.tz_convert('US/Eastern')