1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
.. _tutorials:
*********
Tutorials
*********
This is a guide to many pandas tutorials, geared mainly for new users.
Internal Guides
---------------
pandas own :ref:`10 Minutes to pandas<10min>`
More complex recipes are in the :ref:`Cookbook<cookbook>`
pandas Cookbook
---------------
The goal of this cookbook (by `Julia Evans <http://jvns.ca>`_) is to
give you some concrete examples for getting started with pandas. These
are examples with real-world data, and all the bugs and weirdness that
that entails.
Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
repository <http://github.com/jvns/pandas-cookbook>`_. To run the examples in this tutorial, you'll need to
clone the GitHub repository and get IPython Notebook running.
See `How to use this cookbook <https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook>`_.
- `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
Shows off IPython's awesome tab completion and magic functions.
- `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
Reading your data into pandas is pretty much the easiest thing. Even
when the encoding is wrong!
- `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
It's not totally obvious how to select data from a pandas dataframe.
Here we explain the basics (how to take slices and get columns)
- `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
Here we get into serious slicing and dicing and learn how to filter
dataframes in complicated ways, really fast.
- `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
Groupby/aggregate is seriously my favorite thing about pandas
and I use it all the time. You should probably read this.
- `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
Here you get to find out if it's cold in Montreal in the winter
(spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
- `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
Strings with pandas are great. It has all these vectorized string
operations and they're the best. We will turn a bunch of strings
containing "Snow" into vectors of numbers in a trice.
- `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
Cleaning up messy data is never a joy, but with pandas it's easier.
- `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
Parsing Unix timestamps is confusing at first but it turns out
to be really easy.
Lessons for New pandas Users
----------------------------
For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`_.
- `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
- Importing libraries
- Creating data sets
- Creating data frames
- Reading from CSV
- Exporting to CSV
- Finding maximums
- Plotting data
- `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
- Reading from TXT
- Exporting to TXT
- Selecting top/bottom records
- Descriptive statistics
- Grouping/sorting data
- `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
- Creating functions
- Reading from EXCEL
- Exporting to EXCEL
- Outliers
- Lambda functions
- Slice and dice data
- `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
- Adding/deleting columns
- Index operations
- `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
- Stack/Unstack/Transpose functions
- `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
- GroupBy function
- `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
- Ways to calculate outliers
- `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
- Read from Microsoft SQL databases
- `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
- Export to CSV/EXCEL/TXT
- `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
- Converting between different kinds of formats
- `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
- Combining data from various sources
Practical data analysis with Python
-----------------------------------
This `guide <http://wavedatalab.github.io/datawithpython>`_ is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset.
There are four sections covering selected topics as follows:
- `Munging Data <http://wavedatalab.github.io/datawithpython/munge.html>`_
- `Aggregating Data <http://wavedatalab.github.io/datawithpython/aggregate.html>`_
- `Visualizing Data <http://wavedatalab.github.io/datawithpython/visualize.html>`_
- `Time Series <http://wavedatalab.github.io/datawithpython/timeseries.html>`_
.. _tutorial-modern:
Modern Pandas
-------------
- `Modern Pandas <http://tomaugspurger.github.io/modern-1.html>`_
- `Method Chaining <http://tomaugspurger.github.io/method-chaining.html>`_
- `Indexes <http://tomaugspurger.github.io/modern-3-indexes.html>`_
- `Performance <http://tomaugspurger.github.io/modern-4-performance.html>`_
- `Tidy Data <http://tomaugspurger.github.io/modern-5-tidy.html>`_
- `Visualization <http://tomaugspurger.github.io/modern-6-visualization.html>`_
Excel charts with pandas, vincent and xlsxwriter
------------------------------------------------
- `Using Pandas and XlsxWriter to create Excel charts <https://pandas-xlsxwriter-charts.readthedocs.io/>`_
Various Tutorials
-----------------
- `Wes McKinney's (pandas BDFL) blog <http://blog.wesmckinney.com/>`_
- `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
- `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
- `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
- `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
- `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
- `Pandas Tutorial, by Mikhail Semeniuk <http://www.bearrelroll.com/2013/05/python-pandas-tutorial>`_
|