File: tutorials.rst

package info (click to toggle)
pandas 0.19.2-5.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 101,196 kB
  • ctags: 83,045
  • sloc: python: 210,909; ansic: 12,582; sh: 501; makefile: 130
file content (152 lines) | stat: -rw-r--r-- 8,149 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
.. _tutorials:

*********
Tutorials
*********

This is a guide to many pandas tutorials, geared mainly for new users.

Internal Guides
---------------

pandas own :ref:`10 Minutes to pandas<10min>`

More complex recipes are in the :ref:`Cookbook<cookbook>`

pandas Cookbook
---------------

The goal of this cookbook (by `Julia Evans <http://jvns.ca>`_) is to
give you some concrete examples for getting started with pandas. These
are examples with real-world data, and all the bugs and weirdness that
that entails.

Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
repository <http://github.com/jvns/pandas-cookbook>`_. To run the examples in this tutorial, you'll need to
clone the GitHub repository and get IPython Notebook running.
See `How to use this cookbook <https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook>`_.

-  `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
   Shows off IPython's awesome tab completion and magic functions.
-  `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
   Reading your data into pandas is pretty much the easiest thing. Even
   when the encoding is wrong!
-  `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
   It's not totally obvious how to select data from a pandas dataframe.
   Here we explain the basics (how to take slices and get columns)
-  `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
   Here we get into serious slicing and dicing and learn how to filter
   dataframes in complicated ways, really fast.
-  `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
   Groupby/aggregate is seriously my favorite thing about pandas
   and I use it all the time. You should probably read this.
-  `Chapter 5:  <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
   Here you get to find out if it's cold in Montreal in the winter
   (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
-  `Chapter 6:  <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
   Strings with pandas are great. It has all these vectorized string
   operations and they're the best. We will turn a bunch of strings
   containing "Snow" into vectors of numbers in a trice.
-  `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
   Cleaning up messy data is never a joy, but with pandas it's easier.
-  `Chapter 8:  <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
   Parsing Unix timestamps is confusing at first but it turns out
   to be really easy.


Lessons for New pandas Users
----------------------------

For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`_.

- `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
  - Importing libraries
  - Creating data sets
  - Creating data frames
  - Reading from CSV
  - Exporting to CSV
  - Finding maximums
  - Plotting data

- `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
  - Reading from TXT
  - Exporting to TXT
  - Selecting top/bottom records
  - Descriptive statistics
  - Grouping/sorting data

- `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
  - Creating functions
  - Reading from EXCEL
  - Exporting to EXCEL
  - Outliers
  - Lambda functions
  - Slice and dice data

- `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
  - Adding/deleting columns
  - Index operations

- `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
  - Stack/Unstack/Transpose functions

- `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
  - GroupBy function

- `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
  - Ways to calculate outliers

- `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
  - Read from Microsoft SQL databases

- `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
  - Export to CSV/EXCEL/TXT

- `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
  - Converting between different kinds of formats

- `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
  - Combining data from various sources


Practical data analysis with Python
-----------------------------------

This `guide <http://wavedatalab.github.io/datawithpython>`_ is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset.
There are four sections covering selected topics as follows:

-  `Munging Data <http://wavedatalab.github.io/datawithpython/munge.html>`_

-  `Aggregating Data <http://wavedatalab.github.io/datawithpython/aggregate.html>`_

-  `Visualizing Data <http://wavedatalab.github.io/datawithpython/visualize.html>`_

-  `Time Series <http://wavedatalab.github.io/datawithpython/timeseries.html>`_

.. _tutorial-modern:

Modern Pandas
-------------

- `Modern Pandas <http://tomaugspurger.github.io/modern-1.html>`_
- `Method Chaining <http://tomaugspurger.github.io/method-chaining.html>`_
- `Indexes <http://tomaugspurger.github.io/modern-3-indexes.html>`_
- `Performance <http://tomaugspurger.github.io/modern-4-performance.html>`_
- `Tidy Data <http://tomaugspurger.github.io/modern-5-tidy.html>`_
- `Visualization <http://tomaugspurger.github.io/modern-6-visualization.html>`_

Excel charts with pandas, vincent and xlsxwriter
------------------------------------------------

-  `Using Pandas and XlsxWriter to create Excel charts <https://pandas-xlsxwriter-charts.readthedocs.io/>`_

Various Tutorials
-----------------

- `Wes McKinney's (pandas BDFL) blog <http://blog.wesmckinney.com/>`_
- `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
- `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
- `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
- `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
- `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
- `Pandas Tutorial, by Mikhail Semeniuk <http://www.bearrelroll.com/2013/05/python-pandas-tutorial>`_