1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
.. _whatsnew_0131:
v0.13.1 (February 3, 2014)
--------------------------
This is a minor release from 0.13.0 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- Added ``infer_datetime_format`` keyword to ``read_csv/to_datetime`` to allow speedups for homogeneously formatted datetimes.
- Will intelligently limit display precision for datetime/timedelta formats.
- Enhanced Panel :meth:`~pandas.Panel.apply` method.
- Suggested tutorials in new :ref:`Tutorials<tutorials>` section.
- Our pandas ecosystem is growing, We now feature related projects in a new :ref:`Pandas Ecosystem<ecosystem>` section.
- Much work has been taking place on improving the docs, and a new :ref:`Contributing<contributing>` section has been added.
- Even though it may only be of interest to devs, we <3 our new CI status page: `ScatterCI <http://scatterci.github.io/pydata/pandas>`__.
.. warning::
0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing
chained assignment on a string-like array. Please review :ref:`the docs<indexing.view_versus_copy>`,
chained indexing can have unexpected results and should generally be avoided.
This would previously segfault:
.. ipython:: python
df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
df['A'].iloc[0] = np.nan
df
The recommended way to do this type of assignment is:
.. ipython:: python
df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
df.ix[0,'A'] = np.nan
df
Output Formatting Enhancements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- df.info() view now display dtype info per column (:issue:`5682`)
- df.info() now honors the option ``max_info_rows``, to disable null counts for large frames (:issue:`5974`)
.. ipython:: python
max_info_rows = pd.get_option('max_info_rows')
df = DataFrame(dict(A = np.random.randn(10),
B = np.random.randn(10),
C = date_range('20130101',periods=10)))
df.iloc[3:6,[0,2]] = np.nan
.. ipython:: python
# set to not display the null counts
pd.set_option('max_info_rows',0)
df.info()
.. ipython:: python
# this is the default (same as in 0.13.0)
pd.set_option('max_info_rows',max_info_rows)
df.info()
- Add ``show_dimensions`` display option for the new DataFrame repr to control whether the dimensions print.
.. ipython:: python
df = DataFrame([[1, 2], [3, 4]])
pd.set_option('show_dimensions', False)
df
pd.set_option('show_dimensions', True)
df
- The ``ArrayFormatter`` for ``datetime`` and ``timedelta64`` now intelligently
limit precision based on the values in the array (:issue:`3401`)
Previously output might look like:
.. code-block:: python
age today diff
0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00
1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00
Now the output looks like:
.. ipython:: python
df = DataFrame([ Timestamp('20010101'),
Timestamp('20040601') ], columns=['age'])
df['today'] = Timestamp('20130419')
df['diff'] = df['today']-df['age']
df
API changes
~~~~~~~~~~~
- Add ``-NaN`` and ``-nan`` to the default set of NA values (:issue:`5952`).
See :ref:`NA Values <io.na_values>`.
- Added ``Series.str.get_dummies`` vectorized string method (:issue:`6021`), to extract
dummy/indicator variables for separated string columns:
.. ipython:: python
s = Series(['a', 'a|b', np.nan, 'a|c'])
s.str.get_dummies(sep='|')
- Added the ``NDFrame.equals()`` method to compare if two NDFrames are
equal have equal axes, dtypes, and values. Added the
``array_equivalent`` function to compare if two ndarrays are
equal. NaNs in identical locations are treated as
equal. (:issue:`5283`) See also :ref:`the docs<basics.equals>` for a motivating example.
.. ipython:: python
:okwarning:
df = DataFrame({'col':['foo', 0, np.nan]})
df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
df.equals(df2)
df.equals(df2.sort())
import pandas.core.common as com
com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))
np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
- ``DataFrame.apply`` will use the ``reduce`` argument to determine whether a
``Series`` or a ``DataFrame`` should be returned when the ``DataFrame`` is
empty (:issue:`6007`).
Previously, calling ``DataFrame.apply`` an empty ``DataFrame`` would return
either a ``DataFrame`` if there were no columns, or the function being
applied would be called with an empty ``Series`` to guess whether a
``Series`` or ``DataFrame`` should be returned:
.. ipython:: python
def applied_func(col):
print("Apply function being called with: ", col)
return col.sum()
empty = DataFrame(columns=['a', 'b'])
empty.apply(applied_func)
Now, when ``apply`` is called on an empty ``DataFrame``: if the ``reduce``
argument is ``True`` a ``Series`` will returned, if it is ``False`` a
``DataFrame`` will be returned, and if it is ``None`` (the default) the
function being applied will be called with an empty series to try and guess
the return type.
.. ipython:: python
empty.apply(applied_func, reduce=True)
empty.apply(applied_func, reduce=False)
Prior Version Deprecations/Changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1
Deprecations
~~~~~~~~~~~~
There are no deprecations of prior behavior in 0.13.1
Enhancements
~~~~~~~~~~~~
- ``pd.read_csv`` and ``pd.to_datetime`` learned a new ``infer_datetime_format`` keyword which greatly
improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken
for rapidly implementing. (:issue:`5490`, :issue:`6021`)
If ``parse_dates`` is enabled and this flag is set, pandas will attempt to
infer the format of the datetime strings in the columns, and if it can
be inferred, switch to a faster method of parsing them. In some cases
this can increase the parsing speed by ~5-10x.
.. code-block:: python
# Try to infer the format for the index column
df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
infer_datetime_format=True)
- ``date_format`` and ``datetime_format`` keywords can now be specified when writing to ``excel``
files (:issue:`4133`)
- ``MultiIndex.from_product`` convenience function for creating a MultiIndex from
the cartesian product of a set of iterables (:issue:`6055`):
.. ipython:: python
shades = ['light', 'dark']
colors = ['red', 'green', 'blue']
MultiIndex.from_product([shades, colors], names=['shade', 'color'])
- Panel :meth:`~pandas.Panel.apply` will work on non-ufuncs. See :ref:`the docs<basics.apply_panel>`.
.. ipython:: python
import pandas.util.testing as tm
panel = tm.makePanel(5)
panel
panel['ItemA']
Specifying an ``apply`` that operates on a Series (to return a single element)
.. ipython:: python
panel.apply(lambda x: x.dtype, axis='items')
A similar reduction type operation
.. ipython:: python
panel.apply(lambda x: x.sum(), axis='major_axis')
This is equivalent to
.. ipython:: python
panel.sum('major_axis')
A transformation operation that returns a Panel, but is computing
the z-score across the major_axis
.. ipython:: python
result = panel.apply(
lambda x: (x-x.mean())/x.std(),
axis='major_axis')
result
result['ItemA']
- Panel :meth:`~pandas.Panel.apply` operating on cross-sectional slabs. (:issue:`1148`)
.. ipython:: python
f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
result = panel.apply(f, axis = ['items','major_axis'])
result
result.loc[:,:,'ItemA']
This is equivalent to the following
.. ipython:: python
result = Panel(dict([ (ax,f(panel.loc[:,:,ax]))
for ax in panel.minor_axis ]))
result
result.loc[:,:,'ItemA']
Performance
~~~~~~~~~~~
Performance improvements for 0.13.1
- Series datetime/timedelta binary operations (:issue:`5801`)
- DataFrame ``count/dropna`` for ``axis=1``
- Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (:issue:`5879`)
- Series.str.extract (:issue:`5944`)
- ``dtypes/ftypes`` methods (:issue:`5968`)
- indexing with object dtypes (:issue:`5968`)
- ``DataFrame.apply`` (:issue:`6013`)
- Regression in JSON IO (:issue:`5765`)
- Index construction from Series (:issue:`6150`)
Experimental
~~~~~~~~~~~~
There are no experimental changes in 0.13.1
Bug Fixes
~~~~~~~~~
See :ref:`V0.13.1 Bug Fixes<release.bug_fixes-0.13.1>` for an extensive list of bugs that have been fixed in 0.13.1.
See the :ref:`full release notes
<release>` or issue tracker
on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.
|