1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
import warnings
import numpy as np
import pandas as pd
import pandas.util.testing as tm
try:
from pandas.api.types import union_categoricals
except ImportError:
try:
from pandas.types.concat import union_categoricals
except ImportError:
pass
from .pandas_vb_common import setup # noqa
class Concat(object):
goal_time = 0.2
def setup(self):
N = 10**5
self.s = pd.Series(list('aabbcd') * N).astype('category')
self.a = pd.Categorical(list('aabbcd') * N)
self.b = pd.Categorical(list('bbcdjk') * N)
def time_concat(self):
pd.concat([self.s, self.s])
def time_union(self):
union_categoricals([self.a, self.b])
class Constructor(object):
goal_time = 0.2
def setup(self):
N = 10**5
self.categories = list('abcde')
self.cat_idx = pd.Index(self.categories)
self.values = np.tile(self.categories, N)
self.codes = np.tile(range(len(self.categories)), N)
self.datetimes = pd.Series(pd.date_range('1995-01-01 00:00:00',
periods=N / 10,
freq='s'))
self.datetimes_with_nat = self.datetimes.copy()
self.datetimes_with_nat.iloc[-1] = pd.NaT
self.values_some_nan = list(np.tile(self.categories + [np.nan], N))
self.values_all_nan = [np.nan] * len(self.values)
self.values_all_int8 = np.ones(N, 'int8')
def time_regular(self):
pd.Categorical(self.values, self.categories)
def time_fastpath(self):
pd.Categorical(self.codes, self.cat_idx, fastpath=True)
def time_datetimes(self):
pd.Categorical(self.datetimes)
def time_datetimes_with_nat(self):
pd.Categorical(self.datetimes_with_nat)
def time_with_nan(self):
pd.Categorical(self.values_some_nan)
def time_all_nan(self):
pd.Categorical(self.values_all_nan)
def time_from_codes_all_int8(self):
pd.Categorical.from_codes(self.values_all_int8, self.categories)
class ValueCounts(object):
goal_time = 0.2
params = [True, False]
param_names = ['dropna']
def setup(self, dropna):
n = 5 * 10**5
arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype('category')
def time_value_counts(self, dropna):
self.ts.value_counts(dropna=dropna)
class Repr(object):
goal_time = 0.2
def setup(self):
self.sel = pd.Series(['s1234']).astype('category')
def time_rendering(self):
str(self.sel)
class SetCategories(object):
goal_time = 0.2
def setup(self):
n = 5 * 10**5
arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype('category')
def time_set_categories(self):
self.ts.cat.set_categories(self.ts.cat.categories[::2])
class Rank(object):
goal_time = 0.2
def setup(self):
N = 10**5
ncats = 100
self.s_str = pd.Series(tm.makeCategoricalIndex(N, ncats)).astype(str)
self.s_str_cat = self.s_str.astype('category')
with warnings.catch_warnings(record=True):
self.s_str_cat_ordered = self.s_str.astype('category',
ordered=True)
self.s_int = pd.Series(np.random.randint(0, ncats, size=N))
self.s_int_cat = self.s_int.astype('category')
with warnings.catch_warnings(record=True):
self.s_int_cat_ordered = self.s_int.astype('category',
ordered=True)
def time_rank_string(self):
self.s_str.rank()
def time_rank_string_cat(self):
self.s_str_cat.rank()
def time_rank_string_cat_ordered(self):
self.s_str_cat_ordered.rank()
def time_rank_int(self):
self.s_int.rank()
def time_rank_int_cat(self):
self.s_int_cat.rank()
def time_rank_int_cat_ordered(self):
self.s_int_cat_ordered.rank()
class Isin(object):
goal_time = 0.2
params = ['object', 'int64']
param_names = ['dtype']
def setup(self, dtype):
np.random.seed(1234)
n = 5 * 10**5
sample_size = 100
arr = [i for i in np.random.randint(0, n // 10, size=n)]
if dtype == 'object':
arr = ['s%04d' % i for i in arr]
self.sample = np.random.choice(arr, sample_size)
self.series = pd.Series(arr).astype('category')
def time_isin_categorical(self, dtype):
self.series.isin(self.sample)
class IsMonotonic(object):
def setup(self):
N = 1000
self.c = pd.CategoricalIndex(list('a' * N + 'b' * N + 'c' * N))
self.s = pd.Series(self.c)
def time_categorical_index_is_monotonic_increasing(self):
self.c.is_monotonic_increasing
def time_categorical_index_is_monotonic_decreasing(self):
self.c.is_monotonic_decreasing
def time_categorical_series_is_monotonic_increasing(self):
self.s.is_monotonic_increasing
def time_categorical_series_is_monotonic_decreasing(self):
self.s.is_monotonic_decreasing
|