1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
import string
import warnings
import numpy as np
import pandas.util.testing as tm
from pandas import (DataFrame, Series, MultiIndex, date_range, period_range,
isnull, NaT)
from .pandas_vb_common import setup # noqa
class GetNumericData(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
self.df['foo'] = 'bar'
self.df['bar'] = 'baz'
with warnings.catch_warnings(record=True):
self.df = self.df.consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
class Lookup(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10000, 8),
columns=list('abcdefgh'))
self.df['foo'] = 'bar'
self.row_labels = list(self.df.index[::10])[:900]
self.col_labels = list(self.df.columns) * 100
self.row_labels_all = np.array(
list(self.df.index) * len(self.df.columns), dtype='object')
self.col_labels_all = np.array(
list(self.df.columns) * len(self.df.index), dtype='object')
def time_frame_fancy_lookup(self):
self.df.lookup(self.row_labels, self.col_labels)
def time_frame_fancy_lookup_all(self):
self.df.lookup(self.row_labels_all, self.col_labels_all)
class Reindex(object):
goal_time = 0.2
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N * 10, N))
self.idx = np.arange(4 * N, 7 * N)
self.df2 = DataFrame(
{c: {0: np.random.randint(0, 2, N).astype(np.bool_),
1: np.random.randint(0, N, N).astype(np.int16),
2: np.random.randint(0, N, N).astype(np.int32),
3: np.random.randint(0, N, N).astype(np.int64)}
[np.random.randint(0, 4)] for c in range(N)})
def time_reindex_axis0(self):
self.df.reindex(self.idx)
def time_reindex_axis1(self):
self.df.reindex(columns=self.idx)
def time_reindex_both_axes(self):
self.df.reindex(index=self.idx, columns=self.idx)
def time_reindex_both_axes_ix(self):
self.df.ix[self.idx, self.idx]
def time_reindex_upcast(self):
self.df2.reindex(np.random.permutation(range(1200)))
class Iteration(object):
goal_time = 0.2
def setup(self):
N = 1000
self.df = DataFrame(np.random.randn(N * 10, N))
self.df2 = DataFrame(np.random.randn(N * 50, 10))
self.df3 = DataFrame(np.random.randn(N, 5 * N),
columns=['C' + str(c) for c in range(N * 5)])
def time_iteritems(self):
# (monitor no-copying behaviour)
if hasattr(self.df, '_item_cache'):
self.df._item_cache.clear()
for name, col in self.df.iteritems():
pass
def time_iteritems_cached(self):
for name, col in self.df.iteritems():
pass
def time_iteritems_indexing(self):
for col in self.df3:
self.df3[col]
def time_itertuples(self):
for row in self.df2.itertuples():
pass
def time_iterrows(self):
for row in self.df.iterrows():
pass
class ToString(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(100, 10))
def time_to_string_floats(self):
self.df.to_string()
class ToHTML(object):
goal_time = 0.2
def setup(self):
nrows = 500
self.df2 = DataFrame(np.random.randn(nrows, 10))
self.df2[0] = period_range('2000', periods=nrows)
self.df2[1] = range(nrows)
def time_to_html_mixed(self):
self.df2.to_html()
class Repr(object):
goal_time = 0.2
def setup(self):
nrows = 10000
data = np.random.randn(nrows, 10)
arrays = np.tile(np.random.randn(3, int(nrows / 100)), 100)
idx = MultiIndex.from_arrays(arrays)
self.df3 = DataFrame(data, index=idx)
self.df4 = DataFrame(data, index=np.random.randn(nrows))
self.df_tall = DataFrame(np.random.randn(nrows, 10))
self.df_wide = DataFrame(np.random.randn(10, nrows))
def time_html_repr_trunc_mi(self):
self.df3._repr_html_()
def time_html_repr_trunc_si(self):
self.df4._repr_html_()
def time_repr_tall(self):
repr(self.df_tall)
def time_frame_repr_wide(self):
repr(self.df_wide)
class MaskBool(object):
goal_time = 0.2
def setup(self):
data = np.random.randn(1000, 500)
df = DataFrame(data)
df = df.where(df > 0)
self.bools = df > 0
self.mask = isnull(df)
def time_frame_mask_bools(self):
self.bools.mask(self.mask)
def time_frame_mask_floats(self):
self.bools.astype(float).mask(self.mask)
class Isnull(object):
goal_time = 0.2
def setup(self):
N = 10**3
self.df_no_null = DataFrame(np.random.randn(N, N))
sample = np.array([np.nan, 1.0])
data = np.random.choice(sample, (N, N))
self.df = DataFrame(data)
sample = np.array(list(string.ascii_letters + string.whitespace))
data = np.random.choice(sample, (N, N))
self.df_strings = DataFrame(data)
sample = np.array([NaT, np.nan, None, np.datetime64('NaT'),
np.timedelta64('NaT'), 0, 1, 2.0, '', 'abcd'])
data = np.random.choice(sample, (N, N))
self.df_obj = DataFrame(data)
def time_isnull_floats_no_null(self):
isnull(self.df_no_null)
def time_isnull(self):
isnull(self.df)
def time_isnull_strngs(self):
isnull(self.df_strings)
def time_isnull_obj(self):
isnull(self.df_obj)
class Fillna(object):
goal_time = 0.2
params = ([True, False], ['pad', 'bfill'])
param_names = ['inplace', 'method']
def setup(self, inplace, method):
values = np.random.randn(10000, 100)
values[::2] = np.nan
self.df = DataFrame(values)
def time_frame_fillna(self, inplace, method):
self.df.fillna(inplace=inplace, method=method)
class Dropna(object):
goal_time = 0.2
params = (['all', 'any'], [0, 1])
param_names = ['how', 'axis']
def setup(self, how, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.ix[50:1000, 20:50] = np.nan
self.df.ix[2000:3000] = np.nan
self.df.ix[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed['foo'] = 'bar'
def time_dropna(self, how, axis):
self.df.dropna(how=how, axis=axis)
def time_dropna_axis_mixed_dtypes(self, how, axis):
self.df_mixed.dropna(how=how, axis=axis)
class Count(object):
goal_time = 0.2
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.ix[50:1000, 20:50] = np.nan
self.df.ix[2000:3000] = np.nan
self.df.ix[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed['foo'] = 'bar'
self.df.index = MultiIndex.from_arrays([self.df.index, self.df.index])
self.df.columns = MultiIndex.from_arrays([self.df.columns,
self.df.columns])
self.df_mixed.index = MultiIndex.from_arrays([self.df_mixed.index,
self.df_mixed.index])
self.df_mixed.columns = MultiIndex.from_arrays([self.df_mixed.columns,
self.df_mixed.columns])
def time_count_level_multi(self, axis):
self.df.count(axis=axis, level=1)
def time_count_level_mixed_dtypes_multi(self, axis):
self.df_mixed.count(axis=axis, level=1)
class Apply(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(1000, 100))
self.s = Series(np.arange(1028.0))
self.df2 = DataFrame({i: self.s for i in range(1028)})
self.df3 = DataFrame(np.random.randn(1000, 3), columns=list('ABC'))
def time_apply_user_func(self):
self.df2.apply(lambda x: np.corrcoef(x, self.s)[(0, 1)])
def time_apply_axis_1(self):
self.df.apply(lambda x: x + 1, axis=1)
def time_apply_lambda_mean(self):
self.df.apply(lambda x: x.mean())
def time_apply_np_mean(self):
self.df.apply(np.mean)
def time_apply_pass_thru(self):
self.df.apply(lambda x: x)
def time_apply_ref_by_name(self):
self.df3.apply(lambda x: x['A'] + x['B'], axis=1)
class Dtypes(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
def time_frame_dtypes(self):
self.df.dtypes
class Equals(object):
goal_time = 0.2
def setup(self):
N = 10**3
self.float_df = DataFrame(np.random.randn(N, N))
self.float_df_nan = self.float_df.copy()
self.float_df_nan.iloc[-1, -1] = np.nan
self.object_df = DataFrame('foo', index=range(N), columns=range(N))
self.object_df_nan = self.object_df.copy()
self.object_df_nan.iloc[-1, -1] = np.nan
self.nonunique_cols = self.object_df.copy()
self.nonunique_cols.columns = ['A'] * len(self.nonunique_cols.columns)
self.nonunique_cols_nan = self.nonunique_cols.copy()
self.nonunique_cols_nan.iloc[-1, -1] = np.nan
def time_frame_float_equal(self):
self.float_df.equals(self.float_df)
def time_frame_float_unequal(self):
self.float_df.equals(self.float_df_nan)
def time_frame_nonunique_equal(self):
self.nonunique_cols.equals(self.nonunique_cols)
def time_frame_nonunique_unequal(self):
self.nonunique_cols.equals(self.nonunique_cols_nan)
def time_frame_object_equal(self):
self.object_df.equals(self.object_df)
def time_frame_object_unequal(self):
self.object_df.equals(self.object_df_nan)
class Interpolate(object):
goal_time = 0.2
params = [None, 'infer']
param_names = ['downcast']
def setup(self, downcast):
N = 10000
# this is the worst case, where every column has NaNs.
self.df = DataFrame(np.random.randn(N, 100))
self.df.values[::2] = np.nan
self.df2 = DataFrame({'A': np.arange(0, N),
'B': np.random.randint(0, 100, N),
'C': np.random.randn(N),
'D': np.random.randn(N)})
self.df2.loc[1::5, 'A'] = np.nan
self.df2.loc[1::5, 'C'] = np.nan
def time_interpolate(self, downcast):
self.df.interpolate(downcast=downcast)
def time_interpolate_some_good(self, downcast):
self.df2.interpolate(downcast=downcast)
class Shift(object):
# frame shift speedup issue-5609
goal_time = 0.2
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.df = DataFrame(np.random.rand(10000, 500))
def time_shift(self, axis):
self.df.shift(1, axis=axis)
class Nunique(object):
def setup(self):
self.df = DataFrame(np.random.randn(10000, 1000))
def time_frame_nunique(self):
self.df.nunique()
class Duplicated(object):
goal_time = 0.2
def setup(self):
n = (1 << 20)
t = date_range('2015-01-01', freq='S', periods=(n // 64))
xs = np.random.randn(n // 64).round(2)
self.df = DataFrame({'a': np.random.randint(-1 << 8, 1 << 8, n),
'b': np.random.choice(t, n),
'c': np.random.choice(xs, n)})
self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T
def time_frame_duplicated(self):
self.df.duplicated()
def time_frame_duplicated_wide(self):
self.df2.duplicated()
class XS(object):
goal_time = 0.2
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.N = 10**4
self.df = DataFrame(np.random.randn(self.N, self.N))
def time_frame_xs(self, axis):
self.df.xs(self.N / 2, axis=axis)
class SortValues(object):
goal_time = 0.2
params = [True, False]
param_names = ['ascending']
def setup(self, ascending):
self.df = DataFrame(np.random.randn(1000000, 2), columns=list('AB'))
def time_frame_sort_values(self, ascending):
self.df.sort_values(by='A', ascending=ascending)
class SortIndexByColumns(object):
goal_time = 0.2
def setup(self):
N = 10000
K = 10
self.df = DataFrame({'key1': tm.makeStringIndex(N).values.repeat(K),
'key2': tm.makeStringIndex(N).values.repeat(K),
'value': np.random.randn(N * K)})
def time_frame_sort_values_by_columns(self):
self.df.sort_values(by=['key1', 'key2'])
class Quantile(object):
goal_time = 0.2
params = [0, 1]
param_names = ['axis']
def setup(self, axis):
self.df = DataFrame(np.random.randn(1000, 3), columns=list('ABC'))
def time_frame_quantile(self, axis):
self.df.quantile([0.1, 0.5], axis=axis)
class GetDtypeCounts(object):
# 2807
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10, 10000))
def time_frame_get_dtype_counts(self):
self.df.get_dtype_counts()
def time_info(self):
self.df.info()
class NSort(object):
goal_time = 0.2
params = ['first', 'last']
param_names = ['keep']
def setup(self, keep):
self.df = DataFrame(np.random.randn(1000, 3), columns=list('ABC'))
def time_nlargest(self, keep):
self.df.nlargest(100, 'A', keep=keep)
def time_nsmallest(self, keep):
self.df.nsmallest(100, 'A', keep=keep)
|