File: indexing.py

package info (click to toggle)
pandas 0.23.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 167,704 kB
  • sloc: python: 230,826; ansic: 11,317; sh: 682; makefile: 133
file content (310 lines) | stat: -rw-r--r-- 8,125 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import warnings

import numpy as np
import pandas.util.testing as tm
from pandas import (Series, DataFrame, MultiIndex, Int64Index, Float64Index,
                    IntervalIndex, IndexSlice, concat, date_range)
from .pandas_vb_common import setup, Panel  # noqa


class NumericSeriesIndexing(object):

    goal_time = 0.2
    params = [Int64Index, Float64Index]
    param = ['index']

    def setup(self, index):
        N = 10**6
        idx = index(range(N))
        self.data = Series(np.random.rand(N), index=idx)
        self.array = np.arange(10000)
        self.array_list = self.array.tolist()

    def time_getitem_scalar(self, index):
        self.data[800000]

    def time_getitem_slice(self, index):
        self.data[:800000]

    def time_getitem_list_like(self, index):
        self.data[[800000]]

    def time_getitem_array(self, index):
        self.data[self.array]

    def time_getitem_lists(self, index):
        self.data[self.array_list]

    def time_iloc_array(self, index):
        self.data.iloc[self.array]

    def time_iloc_list_like(self, index):
        self.data.iloc[[800000]]

    def time_iloc_scalar(self, index):
        self.data.iloc[800000]

    def time_iloc_slice(self, index):
        self.data.iloc[:800000]

    def time_ix_array(self, index):
        self.data.ix[self.array]

    def time_ix_list_like(self, index):
        self.data.ix[[800000]]

    def time_ix_scalar(self, index):
        self.data.ix[800000]

    def time_ix_slice(self, index):
        self.data.ix[:800000]

    def time_loc_array(self, index):
        self.data.loc[self.array]

    def time_loc_list_like(self, index):
        self.data.loc[[800000]]

    def time_loc_scalar(self, index):
        self.data.loc[800000]

    def time_loc_slice(self, index):
        self.data.loc[:800000]


class NonNumericSeriesIndexing(object):

    goal_time = 0.2
    params = ['string', 'datetime']
    param_names = ['index']

    def setup(self, index):
        N = 10**5
        indexes = {'string': tm.makeStringIndex(N),
                   'datetime': date_range('1900', periods=N, freq='s')}
        index = indexes[index]
        self.s = Series(np.random.rand(N), index=index)
        self.lbl = index[80000]

    def time_getitem_label_slice(self, index):
        self.s[:self.lbl]

    def time_getitem_pos_slice(self, index):
        self.s[:80000]

    def time_get_value(self, index):
        with warnings.catch_warnings(record=True):
            self.s.get_value(self.lbl)

    def time_getitem_scalar(self, index):
        self.s[self.lbl]


class DataFrameStringIndexing(object):

    goal_time = 0.2

    def setup(self):
        index = tm.makeStringIndex(1000)
        columns = tm.makeStringIndex(30)
        self.df = DataFrame(np.random.randn(1000, 30), index=index,
                            columns=columns)
        self.idx_scalar = index[100]
        self.col_scalar = columns[10]
        self.bool_indexer = self.df[self.col_scalar] > 0
        self.bool_obj_indexer = self.bool_indexer.astype(object)

    def time_get_value(self):
        with warnings.catch_warnings(record=True):
            self.df.get_value(self.idx_scalar, self.col_scalar)

    def time_ix(self):
        self.df.ix[self.idx_scalar, self.col_scalar]

    def time_loc(self):
        self.df.loc[self.idx_scalar, self.col_scalar]

    def time_getitem_scalar(self):
        self.df[self.col_scalar][self.idx_scalar]

    def time_boolean_rows(self):
        self.df[self.bool_indexer]

    def time_boolean_rows_object(self):
        self.df[self.bool_obj_indexer]


class DataFrameNumericIndexing(object):

    goal_time = 0.2

    def setup(self):
        self.idx_dupe = np.array(range(30)) * 99
        self.df = DataFrame(np.random.randn(10000, 5))
        self.df_dup = concat([self.df, 2 * self.df, 3 * self.df])
        self.bool_indexer = [True] * 5000 + [False] * 5000

    def time_iloc_dups(self):
        self.df_dup.iloc[self.idx_dupe]

    def time_loc_dups(self):
        self.df_dup.loc[self.idx_dupe]

    def time_iloc(self):
        self.df.iloc[:100, 0]

    def time_loc(self):
        self.df.loc[:100, 0]

    def time_bool_indexer(self):
        self.df[self.bool_indexer]


class Take(object):

    goal_time = 0.2
    params = ['int', 'datetime']
    param_names = ['index']

    def setup(self, index):
        N = 100000
        indexes = {'int': Int64Index(np.arange(N)),
                   'datetime': date_range('2011-01-01', freq='S', periods=N)}
        index = indexes[index]
        self.s = Series(np.random.rand(N), index=index)
        self.indexer = [True, False, True, True, False] * 20000

    def time_take(self, index):
        self.s.take(self.indexer)


class MultiIndexing(object):

    goal_time = 0.2

    def setup(self):
        mi = MultiIndex.from_product([range(1000), range(1000)])
        self.s = Series(np.random.randn(1000000), index=mi)
        self.df = DataFrame(self.s)

        n = 100000
        self.mdt = DataFrame({'A': np.random.choice(range(10000, 45000, 1000),
                                                    n),
                              'B': np.random.choice(range(10, 400), n),
                              'C': np.random.choice(range(1, 150), n),
                              'D': np.random.choice(range(10000, 45000), n),
                              'x': np.random.choice(range(400), n),
                              'y': np.random.choice(range(25), n)})
        self.idx = IndexSlice[20000:30000, 20:30, 35:45, 30000:40000]
        self.mdt = self.mdt.set_index(['A', 'B', 'C', 'D']).sort_index()

    def time_series_ix(self):
        self.s.ix[999]

    def time_frame_ix(self):
        self.df.ix[999]

    def time_index_slice(self):
        self.mdt.loc[self.idx, :]


class IntervalIndexing(object):

    goal_time = 0.2

    def setup_cache(self):
        idx = IntervalIndex.from_breaks(np.arange(1000001))
        monotonic = Series(np.arange(1000000), index=idx)
        return monotonic

    def time_getitem_scalar(self, monotonic):
        monotonic[80000]

    def time_loc_scalar(self, monotonic):
        monotonic.loc[80000]

    def time_getitem_list(self, monotonic):
        monotonic[80000:]

    def time_loc_list(self, monotonic):
        monotonic.loc[80000:]


class PanelIndexing(object):

    goal_time = 0.2

    def setup(self):
        with warnings.catch_warnings(record=True):
            self.p = Panel(np.random.randn(100, 100, 100))
            self.inds = range(0, 100, 10)

    def time_subset(self):
        with warnings.catch_warnings(record=True):
            self.p.ix[(self.inds, self.inds, self.inds)]


class MethodLookup(object):

    goal_time = 0.2

    def setup_cache(self):
        s = Series()
        return s

    def time_lookup_iloc(self, s):
        s.iloc

    def time_lookup_ix(self, s):
        s.ix

    def time_lookup_loc(self, s):
        s.loc


class GetItemSingleColumn(object):

    goal_time = 0.2

    def setup(self):
        self.df_string_col = DataFrame(np.random.randn(3000, 1), columns=['A'])
        self.df_int_col = DataFrame(np.random.randn(3000, 1))

    def time_frame_getitem_single_column_label(self):
        self.df_string_col['A']

    def time_frame_getitem_single_column_int(self):
        self.df_int_col[0]


class AssignTimeseriesIndex(object):

    goal_time = 0.2

    def setup(self):
        N = 100000
        idx = date_range('1/1/2000', periods=N, freq='H')
        self.df = DataFrame(np.random.randn(N, 1), columns=['A'], index=idx)

    def time_frame_assign_timeseries_index(self):
        self.df['date'] = self.df.index


class InsertColumns(object):

    goal_time = 0.2

    def setup(self):
        self.N = 10**3
        self.df = DataFrame(index=range(self.N))

    def time_insert(self):
        np.random.seed(1234)
        for i in range(100):
            self.df.insert(0, i, np.random.randn(self.N),
                           allow_duplicates=True)

    def time_assign_with_setitem(self):
        np.random.seed(1234)
        for i in range(100):
            self.df[i] = np.random.randn(self.N)