1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
import random
import timeit
import string
import numpy as np
import pandas.util.testing as tm
from pandas import DataFrame, Categorical, date_range, read_csv
from pandas.compat import PY2
from pandas.compat import cStringIO as StringIO
from ..pandas_vb_common import setup, BaseIO # noqa
class ToCSV(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
params = ['wide', 'long', 'mixed']
param_names = ['kind']
def setup(self, kind):
wide_frame = DataFrame(np.random.randn(3000, 30))
long_frame = DataFrame({'A': np.arange(50000),
'B': np.arange(50000) + 1.,
'C': np.arange(50000) + 2.,
'D': np.arange(50000) + 3.})
mixed_frame = DataFrame({'float': np.random.randn(5000),
'int': np.random.randn(5000).astype(int),
'bool': (np.arange(5000) % 2) == 0,
'datetime': date_range('2001',
freq='s',
periods=5000),
'object': ['foo'] * 5000})
mixed_frame.loc[30:500, 'float'] = np.nan
data = {'wide': wide_frame,
'long': long_frame,
'mixed': mixed_frame}
self.df = data[kind]
def time_frame(self, kind):
self.df.to_csv(self.fname)
class ToCSVDatetime(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
def setup(self):
rng = date_range('1/1/2000', periods=1000)
self.data = DataFrame(rng, index=rng)
def time_frame_date_formatting(self):
self.data.to_csv(self.fname, date_format='%Y%m%d')
class ReadCSVDInferDatetimeFormat(object):
goal_time = 0.2
params = ([True, False], ['custom', 'iso8601', 'ymd'])
param_names = ['infer_datetime_format', 'format']
def setup(self, infer_datetime_format, format):
rng = date_range('1/1/2000', periods=1000)
formats = {'custom': '%m/%d/%Y %H:%M:%S.%f',
'iso8601': '%Y-%m-%d %H:%M:%S',
'ymd': '%Y%m%d'}
dt_format = formats[format]
self.data = StringIO('\n'.join(rng.strftime(dt_format).tolist()))
def time_read_csv(self, infer_datetime_format, format):
read_csv(self.data, header=None, names=['foo'], parse_dates=['foo'],
infer_datetime_format=infer_datetime_format)
class ReadCSVSkipRows(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
params = [None, 10000]
param_names = ['skiprows']
def setup(self, skiprows):
N = 20000
index = tm.makeStringIndex(N)
df = DataFrame({'float1': np.random.randn(N),
'float2': np.random.randn(N),
'string1': ['foo'] * N,
'bool1': [True] * N,
'int1': np.random.randint(0, N, size=N)},
index=index)
df.to_csv(self.fname)
def time_skipprows(self, skiprows):
read_csv(self.fname, skiprows=skiprows)
class ReadUint64Integers(object):
goal_time = 0.2
def setup(self):
self.na_values = [2**63 + 500]
arr = np.arange(10000).astype('uint64') + 2**63
self.data1 = StringIO('\n'.join(arr.astype(str).tolist()))
arr = arr.astype(object)
arr[500] = -1
self.data2 = StringIO('\n'.join(arr.astype(str).tolist()))
def time_read_uint64(self):
read_csv(self.data1, header=None, names=['foo'])
def time_read_uint64_neg_values(self):
read_csv(self.data2, header=None, names=['foo'])
def time_read_uint64_na_values(self):
read_csv(self.data1, header=None, names=['foo'],
na_values=self.na_values)
class ReadCSVThousands(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
params = ([',', '|'], [None, ','])
param_names = ['sep', 'thousands']
def setup(self, sep, thousands):
N = 10000
K = 8
data = np.random.randn(N, K) * np.random.randint(100, 10000, (N, K))
df = DataFrame(data)
if thousands is not None:
fmt = ':{}'.format(thousands)
fmt = '{' + fmt + '}'
df = df.applymap(lambda x: fmt.format(x))
df.to_csv(self.fname, sep=sep)
def time_thousands(self, sep, thousands):
read_csv(self.fname, sep=sep, thousands=thousands)
class ReadCSVComment(object):
goal_time = 0.2
def setup(self):
data = ['A,B,C'] + (['1,2,3 # comment'] * 100000)
self.s_data = StringIO('\n'.join(data))
def time_comment(self):
read_csv(self.s_data, comment='#', header=None, names=list('abc'))
class ReadCSVFloatPrecision(object):
goal_time = 0.2
params = ([',', ';'], ['.', '_'], [None, 'high', 'round_trip'])
param_names = ['sep', 'decimal', 'float_precision']
def setup(self, sep, decimal, float_precision):
floats = [''.join(random.choice(string.digits) for _ in range(28))
for _ in range(15)]
rows = sep.join(['0{}'.format(decimal) + '{}'] * 3) + '\n'
data = rows * 5
data = data.format(*floats) * 200 # 1000 x 3 strings csv
self.s_data = StringIO(data)
def time_read_csv(self, sep, decimal, float_precision):
read_csv(self.s_data, sep=sep, header=None, names=list('abc'),
float_precision=float_precision)
def time_read_csv_python_engine(self, sep, decimal, float_precision):
read_csv(self.s_data, sep=sep, header=None, engine='python',
float_precision=None, names=list('abc'))
class ReadCSVCategorical(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
def setup(self):
N = 100000
group1 = ['aaaaaaaa', 'bbbbbbb', 'cccccccc', 'dddddddd', 'eeeeeeee']
df = DataFrame(np.random.choice(group1, (N, 3)), columns=list('abc'))
df.to_csv(self.fname, index=False)
def time_convert_post(self):
read_csv(self.fname).apply(Categorical)
def time_convert_direct(self):
read_csv(self.fname, dtype='category')
class ReadCSVParseDates(object):
goal_time = 0.2
def setup(self):
data = """{},19:00:00,18:56:00,0.8100,2.8100,7.2000,0.0000,280.0000\n
{},20:00:00,19:56:00,0.0100,2.2100,7.2000,0.0000,260.0000\n
{},21:00:00,20:56:00,-0.5900,2.2100,5.7000,0.0000,280.0000\n
{},21:00:00,21:18:00,-0.9900,2.0100,3.6000,0.0000,270.0000\n
{},22:00:00,21:56:00,-0.5900,1.7100,5.1000,0.0000,290.0000\n
"""
two_cols = ['KORD,19990127'] * 5
data = data.format(*two_cols)
self.s_data = StringIO(data)
def time_multiple_date(self):
read_csv(self.s_data, sep=',', header=None,
names=list(string.digits[:9]), parse_dates=[[1, 2], [1, 3]])
def time_baseline(self):
read_csv(self.s_data, sep=',', header=None, parse_dates=[1],
names=list(string.digits[:9]))
|