1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
from datetime import datetime
import numpy as np
import pandas.util.testing as tm
from pandas import Series, date_range, NaT
from .pandas_vb_common import setup # noqa
class SeriesConstructor(object):
goal_time = 0.2
params = [None, 'dict']
param_names = ['data']
def setup(self, data):
self.idx = date_range(start=datetime(2015, 10, 26),
end=datetime(2016, 1, 1),
freq='50s')
dict_data = dict(zip(self.idx, range(len(self.idx))))
self.data = None if data is None else dict_data
def time_constructor(self, data):
Series(data=self.data, index=self.idx)
class IsIn(object):
goal_time = 0.2
params = ['int64', 'object']
param_names = ['dtype']
def setup(self, dtype):
self.s = Series(np.random.randint(1, 10, 100000)).astype(dtype)
self.values = [1, 2]
def time_isin(self, dtypes):
self.s.isin(self.values)
class NSort(object):
goal_time = 0.2
params = ['last', 'first']
param_names = ['keep']
def setup(self, keep):
self.s = Series(np.random.randint(1, 10, 100000))
def time_nlargest(self, keep):
self.s.nlargest(3, keep=keep)
def time_nsmallest(self, keep):
self.s.nsmallest(3, keep=keep)
class Dropna(object):
goal_time = 0.2
params = ['int', 'datetime']
param_names = ['dtype']
def setup(self, dtype):
N = 10**6
data = {'int': np.random.randint(1, 10, N),
'datetime': date_range('2000-01-01', freq='S', periods=N)}
self.s = Series(data[dtype])
if dtype == 'datetime':
self.s[np.random.randint(1, N, 100)] = NaT
def time_dropna(self, dtype):
self.s.dropna()
class Map(object):
goal_time = 0.2
params = ['dict', 'Series']
param_names = 'mapper'
def setup(self, mapper):
map_size = 1000
map_data = Series(map_size - np.arange(map_size))
self.map_data = map_data if mapper == 'Series' else map_data.to_dict()
self.s = Series(np.random.randint(0, map_size, 10000))
def time_map(self, mapper):
self.s.map(self.map_data)
class Clip(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randn(50))
def time_clip(self):
self.s.clip(0, 1)
class ValueCounts(object):
goal_time = 0.2
params = ['int', 'float', 'object']
param_names = ['dtype']
def setup(self, dtype):
self.s = Series(np.random.randint(0, 1000, size=100000)).astype(dtype)
def time_value_counts(self, dtype):
self.s.value_counts()
class Dir(object):
goal_time = 0.2
def setup(self):
self.s = Series(index=tm.makeStringIndex(10000))
def time_dir_strings(self):
dir(self.s)
class SeriesGetattr(object):
# https://github.com/pandas-dev/pandas/issues/19764
goal_time = 0.2
def setup(self):
self.s = Series(1,
index=date_range("2012-01-01", freq='s',
periods=int(1e6)))
def time_series_datetimeindex_repr(self):
getattr(self.s, 'a', None)
|