File: sparse.py

package info (click to toggle)
pandas 0.23.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 167,704 kB
  • sloc: python: 230,826; ansic: 11,317; sh: 682; makefile: 133
file content (162 lines) | stat: -rw-r--r-- 4,917 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import itertools

import numpy as np
import scipy.sparse
from pandas import (SparseSeries, SparseDataFrame, SparseArray, Series,
                    date_range, MultiIndex)

from .pandas_vb_common import setup  # noqa


def make_array(size, dense_proportion, fill_value, dtype):
    dense_size = int(size * dense_proportion)
    arr = np.full(size, fill_value, dtype)
    indexer = np.random.choice(np.arange(size), dense_size, replace=False)
    arr[indexer] = np.random.choice(np.arange(100, dtype=dtype), dense_size)
    return arr


class SparseSeriesToFrame(object):

    goal_time = 0.2

    def setup(self):
        K = 50
        N = 50001
        rng = date_range('1/1/2000', periods=N, freq='T')
        self.series = {}
        for i in range(1, K):
            data = np.random.randn(N)[:-i]
            idx = rng[:-i]
            data[100:] = np.nan
            self.series[i] = SparseSeries(data, index=idx)

    def time_series_to_frame(self):
        SparseDataFrame(self.series)


class SparseArrayConstructor(object):

    goal_time = 0.2
    params = ([0.1, 0.01], [0, np.nan],
              [np.int64, np.float64, np.object])
    param_names = ['dense_proportion', 'fill_value', 'dtype']

    def setup(self, dense_proportion, fill_value, dtype):
        N = 10**6
        self.array = make_array(N, dense_proportion, fill_value, dtype)

    def time_sparse_array(self, dense_proportion, fill_value, dtype):
        SparseArray(self.array, fill_value=fill_value, dtype=dtype)


class SparseDataFrameConstructor(object):

    goal_time = 0.2

    def setup(self):
        N = 1000
        self.arr = np.arange(N)
        self.sparse = scipy.sparse.rand(N, N, 0.005)
        self.dict = dict(zip(range(N), itertools.repeat([0])))

    def time_constructor(self):
        SparseDataFrame(columns=self.arr, index=self.arr)

    def time_from_scipy(self):
        SparseDataFrame(self.sparse)

    def time_from_dict(self):
        SparseDataFrame(self.dict)


class FromCoo(object):

    goal_time = 0.2

    def setup(self):
        self.matrix = scipy.sparse.coo_matrix(([3.0, 1.0, 2.0],
                                               ([1, 0, 0], [0, 2, 3])),
                                              shape=(100, 100))

    def time_sparse_series_from_coo(self):
        SparseSeries.from_coo(self.matrix)


class ToCoo(object):

    goal_time = 0.2

    def setup(self):
        s = Series([np.nan] * 10000)
        s[0] = 3.0
        s[100] = -1.0
        s[999] = 12.1
        s.index = MultiIndex.from_product([range(10)] * 4)
        self.ss = s.to_sparse()

    def time_sparse_series_to_coo(self):
        self.ss.to_coo(row_levels=[0, 1],
                       column_levels=[2, 3],
                       sort_labels=True)


class Arithmetic(object):

    goal_time = 0.2
    params = ([0.1, 0.01], [0, np.nan])
    param_names = ['dense_proportion', 'fill_value']

    def setup(self, dense_proportion, fill_value):
        N = 10**6
        arr1 = make_array(N, dense_proportion, fill_value, np.int64)
        self.array1 = SparseArray(arr1, fill_value=fill_value)
        arr2 = make_array(N, dense_proportion, fill_value, np.int64)
        self.array2 = SparseArray(arr2, fill_value=fill_value)

    def time_make_union(self, dense_proportion, fill_value):
        self.array1.sp_index.make_union(self.array2.sp_index)

    def time_intersect(self, dense_proportion, fill_value):
        self.array1.sp_index.intersect(self.array2.sp_index)

    def time_add(self, dense_proportion, fill_value):
        self.array1 + self.array2

    def time_divide(self, dense_proportion, fill_value):
        self.array1 / self.array2


class ArithmeticBlock(object):

    goal_time = 0.2
    params = [np.nan, 0]
    param_names = ['fill_value']

    def setup(self, fill_value):
        N = 10**6
        self.arr1 = self.make_block_array(length=N, num_blocks=1000,
                                          block_size=10, fill_value=fill_value)
        self.arr2 = self.make_block_array(length=N, num_blocks=1000,
                                          block_size=10, fill_value=fill_value)

    def make_block_array(self, length, num_blocks, block_size, fill_value):
        arr = np.full(length, fill_value)
        indicies = np.random.choice(np.arange(0, length, block_size),
                                    num_blocks,
                                    replace=False)
        for ind in indicies:
            arr[ind:ind + block_size] = np.random.randint(0, 100, block_size)
        return SparseArray(arr, fill_value=fill_value)

    def time_make_union(self, fill_value):
        self.arr1.sp_index.make_union(self.arr2.sp_index)

    def time_intersect(self, fill_value):
        self.arr2.sp_index.intersect(self.arr2.sp_index)

    def time_addition(self, fill_value):
        self.arr1 + self.arr2

    def time_division(self, fill_value):
        self.arr1 / self.arr2