File: developer.rst

package info (click to toggle)
pandas 0.23.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 167,704 kB
  • sloc: python: 230,826; ansic: 11,317; sh: 682; makefile: 133
file content (142 lines) | stat: -rw-r--r-- 4,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
.. _developer:

.. currentmodule:: pandas

.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   np.set_printoptions(precision=4, suppress=True)
   import pandas as pd
   pd.options.display.max_rows = 15

*********
Developer
*********

This section will focus on downstream applications of pandas.

.. _apache.parquet:

Storing pandas DataFrame objects in Apache Parquet format
---------------------------------------------------------

The `Apache Parquet <https://github.com/apache/parquet-format>`__ format
provides key-value metadata at the file and column level, stored in the footer
of the Parquet file:

.. code-block:: shell

  5: optional list<KeyValue> key_value_metadata

where ``KeyValue`` is

.. code-block:: shell

   struct KeyValue {
     1: required string key
     2: optional string value
   }

So that a ``pandas.DataFrame`` can be faithfully reconstructed, we store a
``pandas`` metadata key in the ``FileMetaData`` with the value stored as :

.. code-block:: text

   {'index_columns': ['__index_level_0__', '__index_level_1__', ...],
    'column_indexes': [<ci0>, <ci1>, ..., <ciN>],
    'columns': [<c0>, <c1>, ...],
    'pandas_version': $VERSION}

Here, ``<c0>``/``<ci0>`` and so forth are dictionaries containing the metadata
for each column. This has JSON form:

.. code-block:: text

   {'name': column_name,
    'pandas_type': pandas_type,
    'numpy_type': numpy_type,
    'metadata': metadata}

``pandas_type`` is the logical type of the column, and is one of:

* Boolean: ``'bool'``
* Integers: ``'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'``
* Floats: ``'float16', 'float32', 'float64'``
* Date and Time Types: ``'datetime', 'datetimetz'``, ``'timedelta'``
* String: ``'unicode', 'bytes'``
* Categorical: ``'categorical'``
* Other Python objects: ``'object'``

The ``numpy_type`` is the physical storage type of the column, which is the
result of ``str(dtype)`` for the underlying NumPy array that holds the data. So
for ``datetimetz`` this is ``datetime64[ns]`` and for categorical, it may be
any of the supported integer categorical types.

The ``metadata`` field is ``None`` except for:

* ``datetimetz``: ``{'timezone': zone, 'unit': 'ns'}``, e.g. ``{'timezone',
  'America/New_York', 'unit': 'ns'}``. The ``'unit'`` is optional, and if
  omitted it is assumed to be nanoseconds.
* ``categorical``: ``{'num_categories': K, 'ordered': is_ordered, 'type': $TYPE}``

  * Here ``'type'`` is optional, and can be a nested pandas type specification
    here (but not categorical)

* ``unicode``: ``{'encoding': encoding}``

  * The encoding is optional, and if not present is UTF-8

* ``object``: ``{'encoding': encoding}``. Objects can be serialized and stored
  in ``BYTE_ARRAY`` Parquet columns. The encoding can be one of:

  * ``'pickle'``
  * ``'msgpack'``
  * ``'bson'``
  * ``'json'``

* ``timedelta``: ``{'unit': 'ns'}``. The ``'unit'`` is optional, and if omitted
  it is assumed to be nanoseconds. This metadata is optional altogether

For types other than these, the ``'metadata'`` key can be
omitted. Implementations can assume ``None`` if the key is not present.

As an example of fully-formed metadata:

.. code-block:: text

   {'index_columns': ['__index_level_0__'],
    'column_indexes': [
        {'name': None,
         'pandas_type': 'string',
         'numpy_type': 'object',
         'metadata': None}
    ],
    'columns': [
        {'name': 'c0',
         'pandas_type': 'int8',
         'numpy_type': 'int8',
         'metadata': None},
        {'name': 'c1',
         'pandas_type': 'bytes',
         'numpy_type': 'object',
         'metadata': None},
        {'name': 'c2',
         'pandas_type': 'categorical',
         'numpy_type': 'int16',
         'metadata': {'num_categories': 1000, 'ordered': False}},
        {'name': 'c3',
         'pandas_type': 'datetimetz',
         'numpy_type': 'datetime64[ns]',
         'metadata': {'timezone': 'America/Los_Angeles'}},
        {'name': 'c4',
         'pandas_type': 'object',
         'numpy_type': 'object',
         'metadata': {'encoding': 'pickle'}},
        {'name': '__index_level_0__',
         'pandas_type': 'int64',
         'numpy_type': 'int64',
         'metadata': None}
    ],
    'pandas_version': '0.20.0'}