1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
.. _extending:
****************
Extending Pandas
****************
While pandas provides a rich set of methods, containers, and data types, your
needs may not be fully satisfied. Pandas offers a few options for extending
pandas.
.. _extending.register-accessors:
Registering Custom Accessors
----------------------------
Libraries can use the decorators
:func:`pandas.api.extensions.register_dataframe_accessor`,
:func:`pandas.api.extensions.register_series_accessor`, and
:func:`pandas.api.extensions.register_index_accessor`, to add additional
"namespaces" to pandas objects. All of these follow a similar convention: you
decorate a class, providing the name of attribute to add. The class's
``__init__`` method gets the object being decorated. For example:
.. code-block:: python
@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor(object):
def __init__(self, pandas_obj):
self._obj = pandas_obj
@property
def center(self):
# return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))
def plot(self):
# plot this array's data on a map, e.g., using Cartopy
pass
Now users can access your methods using the ``geo`` namespace:
>>> ds = pd.DataFrame({'longitude': np.linspace(0, 10),
... 'latitude': np.linspace(0, 20)})
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
# plots data on a map
This can be a convenient way to extend pandas objects without subclassing them.
If you write a custom accessor, make a pull request adding it to our
:ref:`ecosystem` page.
.. _extending.extension-types:
Extension Types
---------------
.. versionadded:: 0.23.0
.. warning::
The :class:`pandas.api.extension.ExtensionDtype` and :class:`pandas.api.extension.ExtensionArray` APIs are new and
experimental. They may change between versions without warning.
Pandas defines an interface for implementing data types and arrays that *extend*
NumPy's type system. Pandas itself uses the extension system for some types
that aren't built into NumPy (categorical, period, interval, datetime with
timezone).
Libraries can define a custom array and data type. When pandas encounters these
objects, they will be handled properly (i.e. not converted to an ndarray of
objects). Many methods like :func:`pandas.isna` will dispatch to the extension
type's implementation.
If you're building a library that implements the interface, please publicize it
on :ref:`ecosystem.extensions`.
The interface consists of two classes.
:class:`~pandas.api.extension.ExtensionDtype`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A :class:`pandas.api.extension.ExtensionDtype` is similar to a ``numpy.dtype`` object. It describes the
data type. Implementors are responsible for a few unique items like the name.
One particularly important item is the ``type`` property. This should be the
class that is the scalar type for your data. For example, if you were writing an
extension array for IP Address data, this might be ``ipaddress.IPv4Address``.
See the `extension dtype source`_ for interface definition.
:class:`~pandas.api.extension.ExtensionArray`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This class provides all the array-like functionality. ExtensionArrays are
limited to 1 dimension. An ExtensionArray is linked to an ExtensionDtype via the
``dtype`` attribute.
Pandas makes no restrictions on how an extension array is created via its
``__new__`` or ``__init__``, and puts no restrictions on how you store your
data. We do require that your array be convertible to a NumPy array, even if
this is relatively expensive (as it is for ``Categorical``).
They may be backed by none, one, or many NumPy arrays. For example,
``pandas.Categorical`` is an extension array backed by two arrays,
one for codes and one for categories. An array of IPv6 addresses may
be backed by a NumPy structured array with two fields, one for the
lower 64 bits and one for the upper 64 bits. Or they may be backed
by some other storage type, like Python lists.
See the `extension array source`_ for the interface definition. The docstrings
and comments contain guidance for properly implementing the interface.
We provide a test suite for ensuring that your extension arrays satisfy the expected
behavior. To use the test suite, you must provide several pytest fixtures and inherit
from the base test class. The required fixtures are found in
https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/conftest.py.
To use a test, subclass it:
.. code-block:: python
from pandas.tests.extension import base
class TestConstructors(base.BaseConstructorsTests):
pass
See https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/base/__init__.py
for a list of all the tests available.
.. _extension dtype source: https://github.com/pandas-dev/pandas/blob/master/pandas/core/dtypes/base.py
.. _extension array source: https://github.com/pandas-dev/pandas/blob/master/pandas/core/arrays/base.py
.. _extending.subclassing-pandas:
Subclassing pandas Data Structures
----------------------------------
.. warning:: There are some easier alternatives before considering subclassing ``pandas`` data structures.
1. Extensible method chains with :ref:`pipe <basics.pipe>`
2. Use *composition*. See `here <http://en.wikipedia.org/wiki/Composition_over_inheritance>`_.
3. Extending by :ref:`registering an accessor <extending.register-accessors>`
4. Extending by :ref:`extension type <extending.extension-types>`
This section describes how to subclass ``pandas`` data structures to meet more specific needs. There are two points that need attention:
1. Override constructor properties.
2. Define original properties
.. note::
You can find a nice example in `geopandas <https://github.com/geopandas/geopandas>`_ project.
Override Constructor Properties
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Each data structure has several *constructor properties* for returning a new
data structure as the result of an operation. By overriding these properties,
you can retain subclasses through ``pandas`` data manipulations.
There are 3 constructor properties to be defined:
- ``_constructor``: Used when a manipulation result has the same dimesions as the original.
- ``_constructor_sliced``: Used when a manipulation result has one lower dimension(s) as the original, such as ``DataFrame`` single columns slicing.
- ``_constructor_expanddim``: Used when a manipulation result has one higher dimension as the original, such as ``Series.to_frame()`` and ``DataFrame.to_panel()``.
Following table shows how ``pandas`` data structures define constructor properties by default.
=========================== ======================= =============
Property Attributes ``Series`` ``DataFrame``
=========================== ======================= =============
``_constructor`` ``Series`` ``DataFrame``
``_constructor_sliced`` ``NotImplementedError`` ``Series``
``_constructor_expanddim`` ``DataFrame`` ``Panel``
=========================== ======================= =============
Below example shows how to define ``SubclassedSeries`` and ``SubclassedDataFrame`` overriding constructor properties.
.. code-block:: python
class SubclassedSeries(Series):
@property
def _constructor(self):
return SubclassedSeries
@property
def _constructor_expanddim(self):
return SubclassedDataFrame
class SubclassedDataFrame(DataFrame):
@property
def _constructor(self):
return SubclassedDataFrame
@property
def _constructor_sliced(self):
return SubclassedSeries
.. code-block:: python
>>> s = SubclassedSeries([1, 2, 3])
>>> type(s)
<class '__main__.SubclassedSeries'>
>>> to_framed = s.to_frame()
>>> type(to_framed)
<class '__main__.SubclassedDataFrame'>
>>> df = SubclassedDataFrame({'A', [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> type(df)
<class '__main__.SubclassedDataFrame'>
>>> sliced1 = df[['A', 'B']]
>>> sliced1
A B
0 1 4
1 2 5
2 3 6
>>> type(sliced1)
<class '__main__.SubclassedDataFrame'>
>>> sliced2 = df['A']
>>> sliced2
0 1
1 2
2 3
Name: A, dtype: int64
>>> type(sliced2)
<class '__main__.SubclassedSeries'>
Define Original Properties
^^^^^^^^^^^^^^^^^^^^^^^^^^
To let original data structures have additional properties, you should let ``pandas`` know what properties are added. ``pandas`` maps unknown properties to data names overriding ``__getattribute__``. Defining original properties can be done in one of 2 ways:
1. Define ``_internal_names`` and ``_internal_names_set`` for temporary properties which WILL NOT be passed to manipulation results.
2. Define ``_metadata`` for normal properties which will be passed to manipulation results.
Below is an example to define two original properties, "internal_cache" as a temporary property and "added_property" as a normal property
.. code-block:: python
class SubclassedDataFrame2(DataFrame):
# temporary properties
_internal_names = pd.DataFrame._internal_names + ['internal_cache']
_internal_names_set = set(_internal_names)
# normal properties
_metadata = ['added_property']
@property
def _constructor(self):
return SubclassedDataFrame2
.. code-block:: python
>>> df = SubclassedDataFrame2({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> df.internal_cache = 'cached'
>>> df.added_property = 'property'
>>> df.internal_cache
cached
>>> df.added_property
property
# properties defined in _internal_names is reset after manipulation
>>> df[['A', 'B']].internal_cache
AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache'
# properties defined in _metadata are retained
>>> df[['A', 'B']].added_property
property
|