1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
.. currentmodule:: pandas
.. _gotchas:
********************************
Frequently Asked Questions (FAQ)
********************************
.. ipython:: python
:suppress:
import numpy as np
np.random.seed(123456)
np.set_printoptions(precision=4, suppress=True)
import pandas as pd
pd.options.display.max_rows = 15
import matplotlib
# matplotlib.style.use('default')
import matplotlib.pyplot as plt
plt.close('all')
.. _df-memory-usage:
DataFrame memory usage
----------------------
The memory usage of a ``DataFrame`` (including the index) is shown when calling
the :meth:`~DataFrame.info`. A configuration option, ``display.memory_usage``
(see :ref:`the list of options <options.available>`), specifies if the
``DataFrame``'s memory usage will be displayed when invoking the ``df.info()``
method.
For example, the memory usage of the ``DataFrame`` below is shown
when calling :meth:`~DataFrame.info`:
.. ipython:: python
dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
'complex128', 'object', 'bool']
n = 5000
data = dict([(t, np.random.randint(100, size=n).astype(t))
for t in dtypes])
df = pd.DataFrame(data)
df['categorical'] = df['object'].astype('category')
df.info()
The ``+`` symbol indicates that the true memory usage could be higher, because
pandas does not count the memory used by values in columns with
``dtype=object``.
Passing ``memory_usage='deep'`` will enable a more accurate memory usage report,
accounting for the full usage of the contained objects. This is optional
as it can be expensive to do this deeper introspection.
.. ipython:: python
df.info(memory_usage='deep')
By default the display option is set to ``True`` but can be explicitly
overridden by passing the ``memory_usage`` argument when invoking ``df.info()``.
The memory usage of each column can be found by calling the
:meth:`~DataFrame.memory_usage` method. This returns a ``Series`` with an index
represented by column names and memory usage of each column shown in bytes. For
the ``DataFrame`` above, the memory usage of each column and the total memory
usage can be found with the ``memory_usage`` method:
.. ipython:: python
df.memory_usage()
# total memory usage of dataframe
df.memory_usage().sum()
By default the memory usage of the ``DataFrame``'s index is shown in the
returned ``Series``, the memory usage of the index can be suppressed by passing
the ``index=False`` argument:
.. ipython:: python
df.memory_usage(index=False)
The memory usage displayed by the :meth:`~DataFrame.info` method utilizes the
:meth:`~DataFrame.memory_usage` method to determine the memory usage of a
``DataFrame`` while also formatting the output in human-readable units (base-2
representation; i.e. 1KB = 1024 bytes).
See also :ref:`Categorical Memory Usage <categorical.memory>`.
.. _gotchas.truth:
Using If/Truth Statements with pandas
-------------------------------------
pandas follows the NumPy convention of raising an error when you try to convert
something to a ``bool``. This happens in an ``if``-statement or when using the
boolean operations: ``and``, ``or``, and ``not``. It is not clear what the result
of the following code should be:
.. code-block:: python
>>> if pd.Series([False, True, False]):
...
Should it be ``True`` because it's not zero-length, or ``False`` because there
are ``False`` values? It is unclear, so instead, pandas raises a ``ValueError``:
.. code-block:: python
>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
You need to explicitly choose what you want to do with the ``DataFrame``, e.g.
use :meth:`~DataFrame.any`, :meth:`~DataFrame.all` or :meth:`~DataFrame.empty`.
Alternatively, you might want to compare if the pandas object is ``None``:
.. code-block:: python
>>> if pd.Series([False, True, False]) is not None:
print("I was not None")
>>> I was not None
Below is how to check if any of the values are ``True``:
.. code-block:: python
>>> if pd.Series([False, True, False]).any():
print("I am any")
>>> I am any
To evaluate single-element pandas objects in a boolean context, use the method
:meth:`~DataFrame.bool`:
.. ipython:: python
pd.Series([True]).bool()
pd.Series([False]).bool()
pd.DataFrame([[True]]).bool()
pd.DataFrame([[False]]).bool()
Bitwise boolean
~~~~~~~~~~~~~~~
Bitwise boolean operators like ``==`` and ``!=`` return a boolean ``Series``,
which is almost always what you want anyways.
.. code-block:: python
>>> s = pd.Series(range(5))
>>> s == 4
0 False
1 False
2 False
3 False
4 True
dtype: bool
See :ref:`boolean comparisons<basics.compare>` for more examples.
Using the ``in`` operator
~~~~~~~~~~~~~~~~~~~~~~~~~
Using the Python ``in`` operator on a ``Series`` tests for membership in the
index, not membership among the values.
.. ipython:: python
s = pd.Series(range(5), index=list('abcde'))
2 in s
'b' in s
If this behavior is surprising, keep in mind that using ``in`` on a Python
dictionary tests keys, not values, and ``Series`` are dict-like.
To test for membership in the values, use the method :meth:`~pandas.Series.isin`:
.. ipython:: python
s.isin([2])
s.isin([2]).any()
For ``DataFrames``, likewise, ``in`` applies to the column axis,
testing for membership in the list of column names.
``NaN``, Integer ``NA`` values and ``NA`` type promotions
---------------------------------------------------------
Choice of ``NA`` representation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For lack of ``NA`` (missing) support from the ground up in NumPy and Python in
general, we were given the difficult choice between either:
- A *masked array* solution: an array of data and an array of boolean values
indicating whether a value is there or is missing.
- Using a special sentinel value, bit pattern, or set of sentinel values to
denote ``NA`` across the dtypes.
For many reasons we chose the latter. After years of production use it has
proven, at least in my opinion, to be the best decision given the state of
affairs in NumPy and Python in general. The special value ``NaN``
(Not-A-Number) is used everywhere as the ``NA`` value, and there are API
functions ``isna`` and ``notna`` which can be used across the dtypes to
detect NA values.
However, it comes with it a couple of trade-offs which I most certainly have
not ignored.
.. _gotchas.intna:
Support for integer ``NA``
~~~~~~~~~~~~~~~~~~~~~~~~~~
In the absence of high performance ``NA`` support being built into NumPy from
the ground up, the primary casualty is the ability to represent NAs in integer
arrays. For example:
.. ipython:: python
s = pd.Series([1, 2, 3, 4, 5], index=list('abcde'))
s
s.dtype
s2 = s.reindex(['a', 'b', 'c', 'f', 'u'])
s2
s2.dtype
This trade-off is made largely for memory and performance reasons, and also so
that the resulting ``Series`` continues to be "numeric". One possibility is to
use ``dtype=object`` arrays instead.
``NA`` type promotions
~~~~~~~~~~~~~~~~~~~~~~
When introducing NAs into an existing ``Series`` or ``DataFrame`` via
:meth:`~Series.reindex` or some other means, boolean and integer types will be
promoted to a different dtype in order to store the NAs. The promotions are
summarized in this table:
.. csv-table::
:header: "Typeclass","Promotion dtype for storing NAs"
:widths: 40,60
``floating``, no change
``object``, no change
``integer``, cast to ``float64``
``boolean``, cast to ``object``
While this may seem like a heavy trade-off, I have found very few cases where
this is an issue in practice i.e. storing values greater than 2**53. Some
explanation for the motivation is in the next section.
Why not make NumPy like R?
~~~~~~~~~~~~~~~~~~~~~~~~~~
Many people have suggested that NumPy should simply emulate the ``NA`` support
present in the more domain-specific statistical programming language `R
<https://r-project.org>`__. Part of the reason is the NumPy type hierarchy:
.. csv-table::
:header: "Typeclass","Dtypes"
:widths: 30,70
:delim: |
``numpy.floating`` | ``float16, float32, float64, float128``
``numpy.integer`` | ``int8, int16, int32, int64``
``numpy.unsignedinteger`` | ``uint8, uint16, uint32, uint64``
``numpy.object_`` | ``object_``
``numpy.bool_`` | ``bool_``
``numpy.character`` | ``string_, unicode_``
The R language, by contrast, only has a handful of built-in data types:
``integer``, ``numeric`` (floating-point), ``character``, and
``boolean``. ``NA`` types are implemented by reserving special bit patterns for
each type to be used as the missing value. While doing this with the full NumPy
type hierarchy would be possible, it would be a more substantial trade-off
(especially for the 8- and 16-bit data types) and implementation undertaking.
An alternate approach is that of using masked arrays. A masked array is an
array of data with an associated boolean *mask* denoting whether each value
should be considered ``NA`` or not. I am personally not in love with this
approach as I feel that overall it places a fairly heavy burden on the user and
the library implementer. Additionally, it exacts a fairly high performance cost
when working with numerical data compared with the simple approach of using
``NaN``. Thus, I have chosen the Pythonic "practicality beats purity" approach
and traded integer ``NA`` capability for a much simpler approach of using a
special value in float and object arrays to denote ``NA``, and promoting
integer arrays to floating when NAs must be introduced.
Differences with NumPy
----------------------
For ``Series`` and ``DataFrame`` objects, :meth:`~DataFrame.var` normalizes by
``N-1`` to produce unbiased estimates of the sample variance, while NumPy's
``var`` normalizes by N, which measures the variance of the sample. Note that
:meth:`~DataFrame.cov` normalizes by ``N-1`` in both pandas and NumPy.
Thread-safety
-------------
As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to
the :meth:`~DataFrame.copy` method. If you are doing a lot of copying of
``DataFrame`` objects shared among threads, we recommend holding locks inside
the threads where the data copying occurs.
See `this link <https://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe>`__
for more information.
Byte-Ordering Issues
--------------------
Occasionally you may have to deal with data that were created on a machine with
a different byte order than the one on which you are running Python. A common
symptom of this issue is an error like:
.. code-block:: python
Traceback
...
ValueError: Big-endian buffer not supported on little-endian compiler
To deal
with this issue you should convert the underlying NumPy array to the native
system byte order *before* passing it to ``Series`` or ``DataFrame``
constructors using something similar to the following:
.. ipython:: python
x = np.array(list(range(10)), '>i4') # big endian
newx = x.byteswap().newbyteorder() # force native byteorder
s = pd.Series(newx)
See `the NumPy documentation on byte order
<https://docs.scipy.org/doc/numpy/user/basics.byteswapping.html>`__ for more
details.
|