File: reshaping.rst

package info (click to toggle)
pandas 0.23.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 167,704 kB
  • sloc: python: 230,826; ansic: 11,317; sh: 682; makefile: 133
file content (707 lines) | stat: -rw-r--r-- 21,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
.. currentmodule:: pandas
.. _reshaping:

.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   import pandas as pd
   pd.options.display.max_rows=15
   np.set_printoptions(precision=4, suppress=True)

**************************
Reshaping and Pivot Tables
**************************

Reshaping by pivoting DataFrame objects
---------------------------------------

.. ipython::
   :suppress:

   In [1]: import pandas.util.testing as tm; tm.N = 3

   In [2]: def unpivot(frame):
      ...:         N, K = frame.shape
      ...:         data = {'value' : frame.values.ravel('F'),
      ...:                 'variable' : np.asarray(frame.columns).repeat(N),
      ...:                 'date' : np.tile(np.asarray(frame.index), K)}
      ...:         columns = ['date', 'variable', 'value']
      ...:         return pd.DataFrame(data, columns=columns)
      ...:

   In [3]: df = unpivot(tm.makeTimeDataFrame())

Data is often stored in CSV files or databases in so-called "stacked" or
"record" format:

.. ipython:: python

   df


For the curious here is how the above ``DataFrame`` was created:

.. code-block:: python

   import pandas.util.testing as tm; tm.N = 3
   def unpivot(frame):
       N, K = frame.shape
       data = {'value' : frame.values.ravel('F'),
               'variable' : np.asarray(frame.columns).repeat(N),
               'date' : np.tile(np.asarray(frame.index), K)}
       return pd.DataFrame(data, columns=['date', 'variable', 'value'])
   df = unpivot(tm.makeTimeDataFrame())

To select out everything for variable ``A`` we could do:

.. ipython:: python

   df[df['variable'] == 'A']

.. image:: _static/reshaping_pivot.png

But suppose we wish to do time series operations with the variables. A better
representation would be where the ``columns`` are the unique variables and an
``index`` of dates identifies individual observations. To reshape the data into
this form, we use the :meth:`DataFrame.pivot` method (also implemented as a
top level function :func:`~pandas.pivot`):

.. ipython:: python

   df.pivot(index='date', columns='variable', values='value')

If the ``values`` argument is omitted, and the input ``DataFrame`` has more than
one column of values which are not used as column or index inputs to ``pivot``,
then the resulting "pivoted" ``DataFrame`` will have :ref:`hierarchical columns
<advanced.hierarchical>` whose topmost level indicates the respective value
column:

.. ipython:: python

   df['value2'] = df['value'] * 2
   pivoted = df.pivot('date', 'variable')
   pivoted

You can then select subsets from the pivoted ``DataFrame``:

.. ipython:: python

   pivoted['value2']

Note that this returns a view on the underlying data in the case where the data
are homogeneously-typed.

.. _reshaping.stacking:

Reshaping by stacking and unstacking
------------------------------------

.. image:: _static/reshaping_stack.png

Closely related to the :meth:`~DataFrame.pivot` method are the related
:meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods available on
``Series`` and ``DataFrame``. These methods are designed to work together with
``MultiIndex`` objects (see the section on :ref:`hierarchical indexing
<advanced.hierarchical>`). Here are essentially what these methods do:

  - ``stack``: "pivot" a level of the (possibly hierarchical) column labels,
    returning a ``DataFrame`` with an index with a new inner-most level of row
    labels.
  - ``unstack``: (inverse operation of ``stack``) "pivot" a level of the
    (possibly hierarchical) row index to the column axis, producing a reshaped
    ``DataFrame`` with a new inner-most level of column labels.

.. image:: _static/reshaping_unstack.png

The clearest way to explain is by example. Let's take a prior example data set
from the hierarchical indexing section:

.. ipython:: python

   tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                        'foo', 'foo', 'qux', 'qux'],
                       ['one', 'two', 'one', 'two',
                        'one', 'two', 'one', 'two']]))
   index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
   df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
   df2 = df[:4]
   df2

The ``stack`` function "compresses" a level in the ``DataFrame``'s columns to
produce either:

  - A ``Series``, in the case of a simple column Index.
  - A ``DataFrame``, in the case of a ``MultiIndex`` in the columns.

If the columns have a ``MultiIndex``, you can choose which level to stack. The
stacked level becomes the new lowest level in a ``MultiIndex`` on the columns:

.. ipython:: python

   stacked = df2.stack()
   stacked

With a "stacked" ``DataFrame`` or ``Series`` (having a ``MultiIndex`` as the
``index``), the inverse operation of ``stack`` is ``unstack``, which by default
unstacks the **last level**:

.. ipython:: python

   stacked.unstack()
   stacked.unstack(1)
   stacked.unstack(0)

.. _reshaping.unstack_by_name:

.. image:: _static/reshaping_unstack_1.png

If the indexes have names, you can use the level names instead of specifying
the level numbers:

.. ipython:: python

   stacked.unstack('second')


.. image:: _static/reshaping_unstack_0.png

Notice that the ``stack`` and ``unstack`` methods implicitly sort the index
levels involved. Hence a call to ``stack`` and then ``unstack``, or vice versa,
will result in a **sorted** copy of the original ``DataFrame`` or ``Series``:

.. ipython:: python

   index = pd.MultiIndex.from_product([[2,1], ['a', 'b']])
   df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])
   df
   all(df.unstack().stack() == df.sort_index())

The above code will raise a ``TypeError`` if the call to ``sort_index`` is
removed.

.. _reshaping.stack_multiple:

Multiple Levels
~~~~~~~~~~~~~~~

You may also stack or unstack more than one level at a time by passing a list
of levels, in which case the end result is as if each level in the list were
processed individually.

.. ipython:: python

    columns = pd.MultiIndex.from_tuples([
            ('A', 'cat', 'long'), ('B', 'cat', 'long'),
            ('A', 'dog', 'short'), ('B', 'dog', 'short')
        ],
        names=['exp', 'animal', 'hair_length']
    )
    df = pd.DataFrame(np.random.randn(4, 4), columns=columns)
    df

    df.stack(level=['animal', 'hair_length'])

The list of levels can contain either level names or level numbers (but
not a mixture of the two).

.. ipython:: python

    # df.stack(level=['animal', 'hair_length'])
    # from above is equivalent to:
    df.stack(level=[1, 2])

Missing Data
~~~~~~~~~~~~

These functions are intelligent about handling missing data and do not expect
each subgroup within the hierarchical index to have the same set of labels.
They also can handle the index being unsorted (but you can make it sorted by
calling ``sort_index``, of course). Here is a more complex example:

.. ipython:: python

   columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
                                        ('B', 'cat'), ('A', 'dog')],
                                       names=['exp', 'animal'])
   index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'),
                                       ('one', 'two')],
                                      names=['first', 'second'])
   df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)
   df2 = df.iloc[[0, 1, 2, 4, 5, 7]]
   df2

As mentioned above, ``stack`` can be called with a ``level`` argument to select
which level in the columns to stack:

.. ipython:: python

   df2.stack('exp')
   df2.stack('animal')

Unstacking can result in missing values if subgroups do not have the same
set of labels.  By default, missing values will be replaced with the default
fill value for that data type, ``NaN`` for float, ``NaT`` for datetimelike,
etc.  For integer types, by default data will converted to float and missing
values will be set to ``NaN``.

.. ipython:: python

   df3 = df.iloc[[0, 1, 4, 7], [1, 2]]
   df3
   df3.unstack()

.. versionadded:: 0.18.0

Alternatively, unstack takes an optional ``fill_value`` argument, for specifying
the value of missing data.

.. ipython:: python

   df3.unstack(fill_value=-1e9)

With a MultiIndex
~~~~~~~~~~~~~~~~~

Unstacking when the columns are a ``MultiIndex`` is also careful about doing
the right thing:

.. ipython:: python

   df[:3].unstack(0)
   df2.unstack(1)

.. _reshaping.melt:

Reshaping by Melt
-----------------

.. image:: _static/reshaping_melt.png

The top-level :func:`~pandas.melt` function and the corresponding :meth:`DataFrame.melt`
are useful to massage a ``DataFrame`` into a format where one or more columns
are *identifier variables*, while all other columns, considered *measured
variables*, are "unpivoted" to the row axis, leaving just two non-identifier
columns, "variable" and "value". The names of those columns can be customized
by supplying the ``var_name`` and ``value_name`` parameters.

For instance,

.. ipython:: python

   cheese = pd.DataFrame({'first' : ['John', 'Mary'],
                          'last' : ['Doe', 'Bo'],
                          'height' : [5.5, 6.0],
                          'weight' : [130, 150]})
   cheese
   cheese.melt(id_vars=['first', 'last'])
   cheese.melt(id_vars=['first', 'last'], var_name='quantity')

Another way to transform is to use the :func:`~pandas.wide_to_long` panel data
convenience function. It is less flexible than :func:`~pandas.melt`, but more
user-friendly.

.. ipython:: python

  dft = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
                      "A1980" : {0 : "d", 1 : "e", 2 : "f"},
                      "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
                      "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
                      "X"     : dict(zip(range(3), np.random.randn(3)))
                     })
  dft["id"] = dft.index
  dft
  pd.wide_to_long(dft, ["A", "B"], i="id", j="year")

Combining with stats and GroupBy
--------------------------------

It should be no shock that combining ``pivot`` / ``stack`` / ``unstack`` with
GroupBy and the basic Series and DataFrame statistical functions can produce
some very expressive and fast data manipulations.

.. ipython:: python

   df
   df.stack().mean(1).unstack()

   # same result, another way
   df.groupby(level=1, axis=1).mean()

   df.stack().groupby(level=1).mean()

   df.mean().unstack(0)


Pivot tables
------------

.. _reshaping.pivot:



While :meth:`~DataFrame.pivot` provides general purpose pivoting with various
data types (strings, numerics, etc.), pandas also provides :func:`~pandas.pivot_table`
for pivoting with aggregation of numeric data.

The function :func:`~pandas.pivot_table` can be used to create spreadsheet-style
pivot tables. See the :ref:`cookbook<cookbook.pivot>` for some advanced
strategies.

It takes a number of arguments:

- ``data``: a DataFrame object.
- ``values``: a column or a list of columns to aggregate.
- ``index``: a column, Grouper, array which has the same length as data, or list of them.
  Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- ``columns``: a column, Grouper, array which has the same length as data, or list of them.
  Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- ``aggfunc``: function to use for aggregation, defaulting to ``numpy.mean``.

Consider a data set like this:

.. ipython:: python

   import datetime
   df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
                      'B': ['A', 'B', 'C'] * 8,
                      'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                      'D': np.random.randn(24),
                      'E': np.random.randn(24),
                      'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
                           [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
   df

We can produce pivot tables from this data very easily:

.. ipython:: python

   pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
   pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
   pd.pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum)

The result object is a ``DataFrame`` having potentially hierarchical indexes on the
rows and columns. If the ``values`` column name is not given, the pivot table
will include all of the data that can be aggregated in an additional level of
hierarchy in the columns:

.. ipython:: python

   pd.pivot_table(df, index=['A', 'B'], columns=['C'])

Also, you can use ``Grouper`` for ``index`` and ``columns`` keywords. For detail of ``Grouper``, see :ref:`Grouping with a Grouper specification <groupby.specify>`.

.. ipython:: python

   pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns='C')

You can render a nice output of the table omitting the missing values by
calling ``to_string`` if you wish:

.. ipython:: python

   table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])
   print(table.to_string(na_rep=''))

Note that ``pivot_table`` is also available as an instance method on DataFrame,
 i.e. :meth:`DataFrame.pivot_table`.

.. _reshaping.pivot.margins:

Adding margins
~~~~~~~~~~~~~~

If you pass ``margins=True`` to ``pivot_table``, special ``All`` columns and
rows will be added with partial group aggregates across the categories on the
rows and columns:

.. ipython:: python

   df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)

.. _reshaping.crosstabulations:

Cross tabulations
-----------------

Use :func:`~pandas.crosstab` to compute a cross-tabulation of two (or more)
factors. By default ``crosstab`` computes a frequency table of the factors
unless an array of values and an aggregation function are passed.

It takes a number of arguments

- ``index``: array-like, values to group by in the rows.
- ``columns``: array-like, values to group by in the columns.
- ``values``: array-like, optional, array of values to aggregate according to
  the factors.
- ``aggfunc``: function, optional, If no values array is passed, computes a
  frequency table.
- ``rownames``: sequence, default ``None``, must match number of row arrays passed.
- ``colnames``: sequence, default ``None``, if passed, must match number of column
  arrays passed.
- ``margins``: boolean, default ``False``, Add row/column margins (subtotals)
- ``normalize``: boolean, {'all', 'index', 'columns'}, or {0,1}, default ``False``.
  Normalize by dividing all values by the sum of values.


Any ``Series`` passed will have their name attributes used unless row or column
names for the cross-tabulation are specified

For example:

.. ipython:: python

    foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
    a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
    b = np.array([one, one, two, one, two, one], dtype=object)
    c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
    pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])


If ``crosstab`` receives only two Series, it will provide a frequency table.

.. ipython:: python

    df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
                       'C': [1, 1, np.nan, 1, 1]})
    df

    pd.crosstab(df.A, df.B)

Any input passed containing ``Categorical`` data will have **all** of its
categories included in the cross-tabulation, even if the actual data does
not contain any instances of a particular category.

.. ipython:: python

    foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
    bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
    pd.crosstab(foo, bar)

Normalization
~~~~~~~~~~~~~

.. versionadded:: 0.18.1

Frequency tables can also be normalized to show percentages rather than counts
using the ``normalize`` argument:

.. ipython:: python

   pd.crosstab(df.A, df.B, normalize=True)

``normalize`` can also normalize values within each row or within each column:

.. ipython:: python

   pd.crosstab(df.A, df.B, normalize='columns')

``crosstab`` can also be passed a third ``Series`` and an aggregation function
(``aggfunc``) that will be applied to the values of the third ``Series`` within
each group defined by the first two ``Series``:

.. ipython:: python

   pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)

Adding Margins
~~~~~~~~~~~~~~

Finally, one can also add margins or normalize this output.

.. ipython:: python

   pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True,
               margins=True)

.. _reshaping.tile:
.. _reshaping.tile.cut:

Tiling
------

The :func:`~pandas.cut` function computes groupings for the values of the input
array and is often used to transform continuous variables to discrete or
categorical variables:

.. ipython:: python

   ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

   pd.cut(ages, bins=3)

If the ``bins`` keyword is an integer, then equal-width bins are formed.
Alternatively we can specify custom bin-edges:

.. ipython:: python

   c = pd.cut(ages, bins=[0, 18, 35, 70])
   c

.. versionadded:: 0.20.0

If the ``bins`` keyword is an ``IntervalIndex``, then these will be
used to bin the passed data.::

   pd.cut([25, 20, 50], bins=c.categories)


.. _reshaping.dummies:

Computing indicator / dummy variables
-------------------------------------

To convert a categorical variable into a "dummy" or "indicator" ``DataFrame``,
for example a column in a ``DataFrame`` (a ``Series``) which has ``k`` distinct
values, can derive a ``DataFrame`` containing ``k`` columns of 1s and 0s using
:func:`~pandas.get_dummies`:

.. ipython:: python

   df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})

   pd.get_dummies(df['key'])

Sometimes it's useful to prefix the column names, for example when merging the result
with the original ``DataFrame``:

.. ipython:: python

   dummies = pd.get_dummies(df['key'], prefix='key')
   dummies


   df[['data1']].join(dummies)

This function is often used along with discretization functions like ``cut``:

.. ipython:: python

   values = np.random.randn(10)
   values


   bins = [0, 0.2, 0.4, 0.6, 0.8, 1]


   pd.get_dummies(pd.cut(values, bins))

See also :func:`Series.str.get_dummies <pandas.Series.str.get_dummies>`.

:func:`get_dummies` also accepts a ``DataFrame``. By default all categorical
variables (categorical in the statistical sense, those with `object` or
`categorical` dtype) are encoded as dummy variables.


.. ipython:: python

    df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
                       'C': [1, 2, 3]})
    pd.get_dummies(df)

All non-object columns are included untouched in the output. You can control
the columns that are encoded with the ``columns`` keyword.

.. ipython:: python

    pd.get_dummies(df, columns=['A'])

Notice that the ``B`` column is still included in the output, it just hasn't
been encoded. You can drop ``B`` before calling ``get_dummies`` if you don't
want to include it in the output.

As with the ``Series`` version, you can pass values for the ``prefix`` and
``prefix_sep``. By default the column name is used as the prefix, and '_' as
the prefix separator. You can specify ``prefix`` and ``prefix_sep`` in 3 ways:

- string: Use the same value for ``prefix`` or ``prefix_sep`` for each column
  to be encoded.
- list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix.

.. ipython:: python

    simple = pd.get_dummies(df, prefix='new_prefix')
    simple
    from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
    from_list
    from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
    from_dict

.. versionadded:: 0.18.0

Sometimes it will be useful to only keep k-1 levels of a categorical
variable to avoid collinearity when feeding the result to statistical models.
You can switch to this mode by turn on ``drop_first``.

.. ipython:: python

    s = pd.Series(list('abcaa'))

    pd.get_dummies(s)

    pd.get_dummies(s, drop_first=True)

When a column contains only one level, it will be omitted in the result.

.. ipython:: python

    df = pd.DataFrame({'A':list('aaaaa'),'B':list('ababc')})

    pd.get_dummies(df)

    pd.get_dummies(df, drop_first=True)

By default new columns will have ``np.uint8`` dtype.
To choose another dtype, use the``dtype`` argument:

.. ipython:: python

    df = pd.DataFrame({'A': list('abc'), 'B': [1.1, 2.2, 3.3]})

    pd.get_dummies(df, dtype=bool).dtypes

.. versionadded:: 0.23.0


.. _reshaping.factorize:

Factorizing values
------------------

To encode 1-d values as an enumerated type use :func:`~pandas.factorize`:

.. ipython:: python

   x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
   x
   labels, uniques = pd.factorize(x)
   labels
   uniques

Note that ``factorize`` is similar to ``numpy.unique``, but differs in its
handling of NaN:

.. note::
   The following ``numpy.unique`` will fail under Python 3 with a ``TypeError``
   because of an ordering bug. See also
   `here <https://github.com/numpy/numpy/issues/641>`__.

.. code-block:: ipython

    In [2]: pd.factorize(x, sort=True)
    Out[2]:
    (array([ 2,  2, -1,  3,  0,  1]),
     Index([3.14, inf, u'A', u'B'], dtype='object'))

    In [3]: np.unique(x, return_inverse=True)[::-1]
    Out[3]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))


.. note::
    If you just want to handle one column as a categorical variable (like R's factor),
    you can use  ``df["cat_col"] = pd.Categorical(df["col"])`` or
    ``df["cat_col"] = df["col"].astype("category")``. For full docs on :class:`~pandas.Categorical`,
    see the :ref:`Categorical introduction <categorical>` and the
    :ref:`API documentation <api.categorical>`.