File: sparse.rst

package info (click to toggle)
pandas 0.23.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 167,704 kB
  • sloc: python: 230,826; ansic: 11,317; sh: 682; makefile: 133
file content (288 lines) | stat: -rw-r--r-- 7,848 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
.. currentmodule:: pandas
.. _sparse:

.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   import pandas as pd
   import pandas.util.testing as tm
   np.set_printoptions(precision=4, suppress=True)
   pd.options.display.max_rows = 15

**********************
Sparse data structures
**********************

.. note:: The ``SparsePanel`` class has been removed in 0.19.0

We have implemented "sparse" versions of ``Series`` and ``DataFrame``. These are not sparse
in the typical "mostly 0". Rather, you can view these objects as being "compressed"
where any data matching a specific value (``NaN`` / missing value, though any value
can be chosen) is omitted. A special ``SparseIndex`` object tracks where data has been
"sparsified". This will make much more sense with an example. All of the standard pandas
data structures have a ``to_sparse`` method:

.. ipython:: python

   ts = pd.Series(randn(10))
   ts[2:-2] = np.nan
   sts = ts.to_sparse()
   sts

The ``to_sparse`` method takes a ``kind`` argument (for the sparse index, see
below) and a ``fill_value``. So if we had a mostly zero ``Series``, we could
convert it to sparse with ``fill_value=0``:

.. ipython:: python

   ts.fillna(0).to_sparse(fill_value=0)

The sparse objects exist for memory efficiency reasons. Suppose you had a
large, mostly NA ``DataFrame``:

.. ipython:: python

   df = pd.DataFrame(randn(10000, 4))
   df.iloc[:9998] = np.nan
   sdf = df.to_sparse()
   sdf
   sdf.density

As you can see, the density (% of values that have not been "compressed") is
extremely low. This sparse object takes up much less memory on disk (pickled)
and in the Python interpreter. Functionally, their behavior should be nearly
identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling
``to_dense``:

.. ipython:: python

   sts.to_dense()

.. _sparse.array:

SparseArray
-----------

``SparseArray`` is the base layer for all of the sparse indexed data
structures. It is a 1-dimensional ndarray-like object storing only values
distinct from the ``fill_value``:

.. ipython:: python

   arr = np.random.randn(10)
   arr[2:5] = np.nan; arr[7:8] = np.nan
   sparr = pd.SparseArray(arr)
   sparr

Like the indexed objects (SparseSeries, SparseDataFrame), a ``SparseArray``
can be converted back to a regular ndarray by calling ``to_dense``:

.. ipython:: python

   sparr.to_dense()


SparseIndex objects
-------------------

Two kinds of ``SparseIndex`` are implemented, ``block`` and ``integer``. We
recommend using ``block`` as it's more memory efficient. The ``integer`` format
keeps an arrays of all of the locations where the data are not equal to the
fill value. The ``block`` format tracks only the locations and sizes of blocks
of data.

.. _sparse.dtype:

Sparse Dtypes
-------------

Sparse data should have the same dtype as its dense representation. Currently,
``float64``, ``int64`` and ``bool`` dtypes are supported. Depending on the original
dtype, ``fill_value`` default changes:

- ``float64``: ``np.nan``
- ``int64``: ``0``
- ``bool``: ``False``

.. ipython:: python

   s = pd.Series([1, np.nan, np.nan])
   s
   s.to_sparse()

   s = pd.Series([1, 0, 0])
   s
   s.to_sparse()

   s = pd.Series([True, False, True])
   s
   s.to_sparse()

You can change the dtype using ``.astype()``, the result is also sparse. Note that
``.astype()`` also affects to the ``fill_value`` to keep its dense representation.


.. ipython:: python

   s = pd.Series([1, 0, 0, 0, 0])
   s
   ss = s.to_sparse()
   ss
   ss.astype(np.float64)

It raises if any value cannot be coerced to specified dtype.

.. code-block:: ipython

   In [1]: ss = pd.Series([1, np.nan, np.nan]).to_sparse()
   0    1.0
   1    NaN
   2    NaN
   dtype: float64
   BlockIndex
   Block locations: array([0], dtype=int32)
   Block lengths: array([1], dtype=int32)

   In [2]: ss.astype(np.int64)
   ValueError: unable to coerce current fill_value nan to int64 dtype

.. _sparse.calculation:

Sparse Calculation
------------------

You can apply NumPy *ufuncs* to ``SparseArray`` and get a ``SparseArray`` as a result.

.. ipython:: python

   arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan])
   np.abs(arr)


The *ufunc* is also applied to ``fill_value``. This is needed to get
the correct dense result.

.. ipython:: python

   arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1)
   np.abs(arr)
   np.abs(arr).to_dense()

.. _sparse.scipysparse:

Interaction with scipy.sparse
-----------------------------

SparseDataFrame
~~~~~~~~~~~~~~~

.. versionadded:: 0.20.0

Pandas supports creating sparse dataframes directly from ``scipy.sparse`` matrices.

.. ipython:: python

   from scipy.sparse import csr_matrix

   arr = np.random.random(size=(1000, 5))
   arr[arr < .9] = 0

   sp_arr = csr_matrix(arr)
   sp_arr

   sdf = pd.SparseDataFrame(sp_arr)
   sdf

All sparse formats are supported, but matrices that are not in :mod:`COOrdinate <scipy.sparse>` format will be converted, copying data as needed.
To convert a ``SparseDataFrame`` back to sparse SciPy matrix in COO format, you can use the :meth:`SparseDataFrame.to_coo` method:

.. ipython:: python

   sdf.to_coo()

SparseSeries
~~~~~~~~~~~~

A :meth:`SparseSeries.to_coo` method is implemented for transforming a ``SparseSeries`` indexed by a ``MultiIndex`` to a ``scipy.sparse.coo_matrix``.

The method requires a ``MultiIndex`` with two or more levels.

.. ipython:: python
   :suppress:


.. ipython:: python

   s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
   s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
                                        (1, 2, 'a', 1),
                                        (1, 1, 'b', 0),
                                        (1, 1, 'b', 1),
                                        (2, 1, 'b', 0),
                                        (2, 1, 'b', 1)],
                                        names=['A', 'B', 'C', 'D'])

   s
   # SparseSeries
   ss = s.to_sparse()
   ss

In the example below, we transform the ``SparseSeries`` to a sparse representation of a 2-d array by specifying that the first and second ``MultiIndex`` levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.

.. ipython:: python

   A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
                                column_levels=['C', 'D'],
                                sort_labels=True)

   A
   A.todense()
   rows
   columns

Specifying different row and column labels (and not sorting them) yields a different sparse matrix:

.. ipython:: python

   A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'],
                                column_levels=['D'],
                                sort_labels=False)

   A
   A.todense()
   rows
   columns

A convenience method :meth:`SparseSeries.from_coo` is implemented for creating a ``SparseSeries`` from a ``scipy.sparse.coo_matrix``.

.. ipython:: python
   :suppress:

.. ipython:: python

   from scipy import sparse
   A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
                         shape=(3, 4))
   A
   A.todense()

The default behaviour (with ``dense_index=False``) simply returns a ``SparseSeries`` containing
only the non-null entries.

.. ipython:: python

   ss = pd.SparseSeries.from_coo(A)
   ss

Specifying ``dense_index=True`` will result in an index that is the Cartesian product of the
row and columns coordinates of the matrix. Note that this will consume a significant amount of memory
(relative to ``dense_index=False``) if the sparse matrix is large (and sparse) enough.

.. ipython:: python

   ss_dense = pd.SparseSeries.from_coo(A, dense_index=True)
   ss_dense