1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
import numpy as np
import pandas as pd
from pandas import DataFrame, MultiIndex, Series, Timestamp, date_range
from .pandas_vb_common import tm
try:
from pandas.tseries.offsets import Hour, Nano
except ImportError:
# For compatibility with older versions
from pandas.core.datetools import * # noqa
class FromDicts:
def setup(self):
N, K = 5000, 50
self.index = tm.makeStringIndex(N)
self.columns = tm.makeStringIndex(K)
frame = DataFrame(np.random.randn(N, K), index=self.index, columns=self.columns)
self.data = frame.to_dict()
self.dict_list = frame.to_dict(orient="records")
self.data2 = {i: {j: float(j) for j in range(100)} for i in range(2000)}
def time_list_of_dict(self):
DataFrame(self.dict_list)
def time_nested_dict(self):
DataFrame(self.data)
def time_nested_dict_index(self):
DataFrame(self.data, index=self.index)
def time_nested_dict_columns(self):
DataFrame(self.data, columns=self.columns)
def time_nested_dict_index_columns(self):
DataFrame(self.data, index=self.index, columns=self.columns)
def time_nested_dict_int64(self):
# nested dict, integer indexes, regression described in #621
DataFrame(self.data2)
class FromSeries:
def setup(self):
mi = MultiIndex.from_product([range(100), range(100)])
self.s = Series(np.random.randn(10000), index=mi)
def time_mi_series(self):
DataFrame(self.s)
class FromDictwithTimestamp:
params = [Nano(1), Hour(1)]
param_names = ["offset"]
def setup(self, offset):
N = 10 ** 3
np.random.seed(1234)
idx = date_range(Timestamp("1/1/1900"), freq=offset, periods=N)
df = DataFrame(np.random.randn(N, 10), index=idx)
self.d = df.to_dict()
def time_dict_with_timestamp_offsets(self, offset):
DataFrame(self.d)
class FromRecords:
params = [None, 1000]
param_names = ["nrows"]
# Generators get exhausted on use, so run setup before every call
number = 1
repeat = (3, 250, 10)
def setup(self, nrows):
N = 100000
self.gen = ((x, (x * 20), (x * 100)) for x in range(N))
def time_frame_from_records_generator(self, nrows):
# issue-6700
self.df = DataFrame.from_records(self.gen, nrows=nrows)
class FromNDArray:
def setup(self):
N = 100000
self.data = np.random.randn(N)
def time_frame_from_ndarray(self):
self.df = DataFrame(self.data)
class FromLists:
goal_time = 0.2
def setup(self):
N = 1000
M = 100
self.data = [list(range(M)) for i in range(N)]
def time_frame_from_lists(self):
self.df = DataFrame(self.data)
class FromRange:
goal_time = 0.2
def setup(self):
N = 1_000_000
self.data = range(N)
def time_frame_from_range(self):
self.df = DataFrame(self.data)
class FromArrays:
goal_time = 0.2
def setup(self):
N_rows = 1000
N_cols = 1000
self.float_arrays = [np.random.randn(N_rows) for _ in range(N_cols)]
self.sparse_arrays = [
pd.arrays.SparseArray(np.random.randint(0, 2, N_rows), dtype="float64")
for _ in range(N_cols)
]
self.int_arrays = [
pd.array(np.random.randint(1000, size=N_rows), dtype="Int64")
for _ in range(N_cols)
]
self.index = pd.Index(range(N_rows))
self.columns = pd.Index(range(N_cols))
def time_frame_from_arrays_float(self):
self.df = DataFrame._from_arrays(
self.float_arrays,
index=self.index,
columns=self.columns,
verify_integrity=False,
)
def time_frame_from_arrays_int(self):
self.df = DataFrame._from_arrays(
self.int_arrays,
index=self.index,
columns=self.columns,
verify_integrity=False,
)
def time_frame_from_arrays_sparse(self):
self.df = DataFrame._from_arrays(
self.sparse_arrays,
index=self.index,
columns=self.columns,
verify_integrity=False,
)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|