1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
import numpy as np
from pandas import DataFrame, Index, MultiIndex, Series, date_range, period_range
from .pandas_vb_common import lib, tm
class Reindex:
def setup(self):
rng = date_range(start="1/1/1970", periods=10000, freq="1min")
self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10))
self.df["foo"] = "bar"
self.rng_subset = Index(rng[::2])
self.df2 = DataFrame(
index=range(10000), data=np.random.rand(10000, 30), columns=range(30)
)
N = 5000
K = 200
level1 = tm.makeStringIndex(N).values.repeat(K)
level2 = np.tile(tm.makeStringIndex(K).values, N)
index = MultiIndex.from_arrays([level1, level2])
self.s = Series(np.random.randn(N * K), index=index)
self.s_subset = self.s[::2]
def time_reindex_dates(self):
self.df.reindex(self.rng_subset)
def time_reindex_columns(self):
self.df2.reindex(columns=self.df.columns[1:5])
def time_reindex_multiindex(self):
self.s.reindex(self.s_subset.index)
class ReindexMethod:
params = [["pad", "backfill"], [date_range, period_range]]
param_names = ["method", "constructor"]
def setup(self, method, constructor):
N = 100000
self.idx = constructor("1/1/2000", periods=N, freq="1min")
self.ts = Series(np.random.randn(N), index=self.idx)[::2]
def time_reindex_method(self, method, constructor):
self.ts.reindex(self.idx, method=method)
class Fillna:
params = ["pad", "backfill"]
param_names = ["method"]
def setup(self, method):
N = 100000
self.idx = date_range("1/1/2000", periods=N, freq="1min")
ts = Series(np.random.randn(N), index=self.idx)[::2]
self.ts_reindexed = ts.reindex(self.idx)
self.ts_float32 = self.ts_reindexed.astype("float32")
def time_reindexed(self, method):
self.ts_reindexed.fillna(method=method)
def time_float_32(self, method):
self.ts_float32.fillna(method=method)
class LevelAlign:
def setup(self):
self.index = MultiIndex(
levels=[np.arange(10), np.arange(100), np.arange(100)],
codes=[
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
],
)
self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index)
self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1])
def time_align_level(self):
self.df.align(self.df_level, level=1, copy=False)
def time_reindex_level(self):
self.df_level.reindex(self.index, level=1)
class DropDuplicates:
params = [True, False]
param_names = ["inplace"]
def setup(self, inplace):
N = 10000
K = 10
key1 = tm.makeStringIndex(N).values.repeat(K)
key2 = tm.makeStringIndex(N).values.repeat(K)
self.df = DataFrame(
{"key1": key1, "key2": key2, "value": np.random.randn(N * K)}
)
self.df_nan = self.df.copy()
self.df_nan.iloc[:10000, :] = np.nan
self.s = Series(np.random.randint(0, 1000, size=10000))
self.s_str = Series(np.tile(tm.makeStringIndex(1000).values, 10))
N = 1000000
K = 10000
key1 = np.random.randint(0, K, size=N)
self.df_int = DataFrame({"key1": key1})
self.df_bool = DataFrame(np.random.randint(0, 2, size=(K, 10), dtype=bool))
def time_frame_drop_dups(self, inplace):
self.df.drop_duplicates(["key1", "key2"], inplace=inplace)
def time_frame_drop_dups_na(self, inplace):
self.df_nan.drop_duplicates(["key1", "key2"], inplace=inplace)
def time_series_drop_dups_int(self, inplace):
self.s.drop_duplicates(inplace=inplace)
def time_series_drop_dups_string(self, inplace):
self.s_str.drop_duplicates(inplace=inplace)
def time_frame_drop_dups_int(self, inplace):
self.df_int.drop_duplicates(inplace=inplace)
def time_frame_drop_dups_bool(self, inplace):
self.df_bool.drop_duplicates(inplace=inplace)
class Align:
# blog "pandas escaped the zoo"
def setup(self):
n = 50000
indices = tm.makeStringIndex(n)
subsample_size = 40000
self.x = Series(np.random.randn(n), indices)
self.y = Series(
np.random.randn(subsample_size),
index=np.random.choice(indices, subsample_size, replace=False),
)
def time_align_series_irregular_string(self):
self.x + self.y
class LibFastZip:
def setup(self):
N = 10000
K = 10
key1 = tm.makeStringIndex(N).values.repeat(K)
key2 = tm.makeStringIndex(N).values.repeat(K)
col_array = np.vstack([key1, key2, np.random.randn(N * K)])
col_array2 = col_array.copy()
col_array2[:, :10000] = np.nan
self.col_array_list = list(col_array)
def time_lib_fast_zip(self):
lib.fast_zip(self.col_array_list)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|