1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
import numpy as np
import scipy.sparse
import pandas as pd
from pandas import MultiIndex, Series, date_range
from pandas.arrays import SparseArray
def make_array(size, dense_proportion, fill_value, dtype):
dense_size = int(size * dense_proportion)
arr = np.full(size, fill_value, dtype)
indexer = np.random.choice(np.arange(size), dense_size, replace=False)
arr[indexer] = np.random.choice(np.arange(100, dtype=dtype), dense_size)
return arr
class SparseSeriesToFrame:
def setup(self):
K = 50
N = 50001
rng = date_range("1/1/2000", periods=N, freq="T")
self.series = {}
for i in range(1, K):
data = np.random.randn(N)[:-i]
idx = rng[:-i]
data[100:] = np.nan
self.series[i] = pd.Series(pd.SparseArray(data), index=idx)
def time_series_to_frame(self):
pd.DataFrame(self.series)
class SparseArrayConstructor:
params = ([0.1, 0.01], [0, np.nan], [np.int64, np.float64, object])
param_names = ["dense_proportion", "fill_value", "dtype"]
def setup(self, dense_proportion, fill_value, dtype):
N = 10 ** 6
self.array = make_array(N, dense_proportion, fill_value, dtype)
def time_sparse_array(self, dense_proportion, fill_value, dtype):
SparseArray(self.array, fill_value=fill_value, dtype=dtype)
class SparseDataFrameConstructor:
def setup(self):
N = 1000
self.sparse = scipy.sparse.rand(N, N, 0.005)
def time_from_scipy(self):
pd.DataFrame.sparse.from_spmatrix(self.sparse)
class FromCoo:
def setup(self):
self.matrix = scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(100, 100)
)
def time_sparse_series_from_coo(self):
pd.Series.sparse.from_coo(self.matrix)
class ToCoo:
def setup(self):
s = Series([np.nan] * 10000)
s[0] = 3.0
s[100] = -1.0
s[999] = 12.1
s.index = MultiIndex.from_product([range(10)] * 4)
self.ss = s.astype("Sparse")
def time_sparse_series_to_coo(self):
self.ss.sparse.to_coo(row_levels=[0, 1], column_levels=[2, 3], sort_labels=True)
class Arithmetic:
params = ([0.1, 0.01], [0, np.nan])
param_names = ["dense_proportion", "fill_value"]
def setup(self, dense_proportion, fill_value):
N = 10 ** 6
arr1 = make_array(N, dense_proportion, fill_value, np.int64)
self.array1 = SparseArray(arr1, fill_value=fill_value)
arr2 = make_array(N, dense_proportion, fill_value, np.int64)
self.array2 = SparseArray(arr2, fill_value=fill_value)
def time_make_union(self, dense_proportion, fill_value):
self.array1.sp_index.make_union(self.array2.sp_index)
def time_intersect(self, dense_proportion, fill_value):
self.array1.sp_index.intersect(self.array2.sp_index)
def time_add(self, dense_proportion, fill_value):
self.array1 + self.array2
def time_divide(self, dense_proportion, fill_value):
self.array1 / self.array2
class ArithmeticBlock:
params = [np.nan, 0]
param_names = ["fill_value"]
def setup(self, fill_value):
N = 10 ** 6
self.arr1 = self.make_block_array(
length=N, num_blocks=1000, block_size=10, fill_value=fill_value
)
self.arr2 = self.make_block_array(
length=N, num_blocks=1000, block_size=10, fill_value=fill_value
)
def make_block_array(self, length, num_blocks, block_size, fill_value):
arr = np.full(length, fill_value)
indicies = np.random.choice(
np.arange(0, length, block_size), num_blocks, replace=False
)
for ind in indicies:
arr[ind : ind + block_size] = np.random.randint(0, 100, block_size)
return SparseArray(arr, fill_value=fill_value)
def time_make_union(self, fill_value):
self.arr1.sp_index.make_union(self.arr2.sp_index)
def time_intersect(self, fill_value):
self.arr2.sp_index.intersect(self.arr2.sp_index)
def time_addition(self, fill_value):
self.arr1 + self.arr2
def time_division(self, fill_value):
self.arr1 / self.arr2
from .pandas_vb_common import setup # noqa: F401 isort:skip
|