File: normalize.py

package info (click to toggle)
pandas 1.1.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,284 kB
  • sloc: python: 292,793; ansic: 8,591; sh: 608; makefile: 94
file content (32 lines) | stat: -rw-r--r-- 926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
try:
    from pandas._libs.tslibs import is_date_array_normalized, normalize_i8_timestamps
except ImportError:
    from pandas._libs.tslibs.conversion import (
        normalize_i8_timestamps,
        is_date_array_normalized,
    )

import pandas as pd

from .tslib import _sizes, _tzs


class Normalize:
    params = [
        _sizes,
        _tzs,
    ]
    param_names = ["size", "tz"]

    def setup(self, size, tz):
        # use an array that will have is_date_array_normalized give True,
        #  so we do not short-circuit early.
        dti = pd.date_range("2016-01-01", periods=10, tz=tz).repeat(size // 10)
        self.i8data = dti.asi8

    def time_normalize_i8_timestamps(self, size, tz):
        normalize_i8_timestamps(self.i8data, tz)

    def time_is_date_array_normalized(self, size, tz):
        # TODO: cases with different levels of short-circuiting
        is_date_array_normalized(self.i8data, tz)