File: comparison_with_sas.rst

package info (click to toggle)
pandas 1.1.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,284 kB
  • sloc: python: 292,793; ansic: 8,591; sh: 608; makefile: 94
file content (755 lines) | stat: -rw-r--r-- 19,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
.. _compare_with_sas:

{{ header }}

Comparison with SAS
********************
For potential users coming from `SAS <https://en.wikipedia.org/wiki/SAS_(software)>`__
this page is meant to demonstrate how different SAS operations would be
performed in pandas.

If you're new to pandas, you might want to first read through :ref:`10 Minutes to pandas<10min>`
to familiarize yourself with the library.

As is customary, we import pandas and NumPy as follows:

.. ipython:: python

    import pandas as pd
    import numpy as np


.. note::

   Throughout this tutorial, the pandas ``DataFrame`` will be displayed by calling
   ``df.head()``, which displays the first N (default 5) rows of the ``DataFrame``.
   This is often used in interactive work (e.g. `Jupyter notebook
   <https://jupyter.org/>`_ or terminal) - the equivalent in SAS would be:

   .. code-block:: sas

      proc print data=df(obs=5);
      run;

Data structures
---------------

General terminology translation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. csv-table::
    :header: "pandas", "SAS"
    :widths: 20, 20

    ``DataFrame``, data set
    column, variable
    row, observation
    groupby, BY-group
    ``NaN``, ``.``


``DataFrame`` / ``Series``
~~~~~~~~~~~~~~~~~~~~~~~~~~

A ``DataFrame`` in pandas is analogous to a SAS data set - a two-dimensional
data source with labeled columns that can be of different types. As will be
shown in this document, almost any operation that can be applied to a data set
using SAS's ``DATA`` step, can also be accomplished in pandas.

A ``Series`` is the data structure that represents one column of a
``DataFrame``. SAS doesn't have a separate data structure for a single column,
but in general, working with a ``Series`` is analogous to referencing a column
in the ``DATA`` step.

``Index``
~~~~~~~~~

Every ``DataFrame`` and ``Series`` has an ``Index`` - which are labels on the
*rows* of the data. SAS does not have an exactly analogous concept. A data set's
rows are essentially unlabeled, other than an implicit integer index that can be
accessed during the ``DATA`` step (``_N_``).

In pandas, if no index is specified, an integer index is also used by default
(first row = 0, second row = 1, and so on). While using a labeled ``Index`` or
``MultiIndex`` can enable sophisticated analyses and is ultimately an important
part of pandas to understand, for this comparison we will essentially ignore the
``Index`` and just treat the ``DataFrame`` as a collection of columns. Please
see the :ref:`indexing documentation<indexing>` for much more on how to use an
``Index`` effectively.


Data input / output
-------------------

Constructing a DataFrame from values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A SAS data set can be built from specified values by
placing the data after a ``datalines`` statement and
specifying the column names.

.. code-block:: sas

   data df;
       input x y;
       datalines;
       1 2
       3 4
       5 6
       ;
   run;

A pandas ``DataFrame`` can be constructed in many different ways,
but for a small number of values, it is often convenient to specify it as
a Python dictionary, where the keys are the column names
and the values are the data.

.. ipython:: python

   df = pd.DataFrame({'x': [1, 3, 5], 'y': [2, 4, 6]})
   df


Reading external data
~~~~~~~~~~~~~~~~~~~~~

Like SAS, pandas provides utilities for reading in data from
many formats.  The ``tips`` dataset, found within the pandas
tests (`csv <https://raw.github.com/pandas-dev/pandas/master/pandas/tests/io/data/csv/tips.csv>`_)
will be used in many of the following examples.

SAS provides ``PROC IMPORT`` to read csv data into a data set.

.. code-block:: sas

   proc import datafile='tips.csv' dbms=csv out=tips replace;
       getnames=yes;
   run;

The pandas method is :func:`read_csv`, which works similarly.

.. ipython:: python

   url = ('https://raw.github.com/pandas-dev/'
          'pandas/master/pandas/tests/io/data/csv/tips.csv')
   tips = pd.read_csv(url)
   tips.head()


Like ``PROC IMPORT``, ``read_csv`` can take a number of parameters to specify
how the data should be parsed.  For example, if the data was instead tab delimited,
and did not have column names, the pandas command would be:

.. code-block:: python

   tips = pd.read_csv('tips.csv', sep='\t', header=None)

   # alternatively, read_table is an alias to read_csv with tab delimiter
   tips = pd.read_table('tips.csv', header=None)

In addition to text/csv, pandas supports a variety of other data formats
such as Excel, HDF5, and SQL databases.  These are all read via a ``pd.read_*``
function.  See the :ref:`IO documentation<io>` for more details.

Exporting data
~~~~~~~~~~~~~~

The inverse of ``PROC IMPORT`` in SAS is ``PROC EXPORT``

.. code-block:: sas

   proc export data=tips outfile='tips2.csv' dbms=csv;
   run;

Similarly in pandas, the opposite of ``read_csv`` is :meth:`~DataFrame.to_csv`,
and other data formats follow a similar api.

.. code-block:: python

   tips.to_csv('tips2.csv')


Data operations
---------------

Operations on columns
~~~~~~~~~~~~~~~~~~~~~

In the ``DATA`` step, arbitrary math expressions can
be used on new or existing columns.

.. code-block:: sas

   data tips;
       set tips;
       total_bill = total_bill - 2;
       new_bill = total_bill / 2;
   run;

pandas provides similar vectorized operations by
specifying the individual ``Series`` in the ``DataFrame``.
New columns can be assigned in the same way.

.. ipython:: python

   tips['total_bill'] = tips['total_bill'] - 2
   tips['new_bill'] = tips['total_bill'] / 2.0
   tips.head()

.. ipython:: python
   :suppress:

   tips = tips.drop('new_bill', axis=1)

Filtering
~~~~~~~~~

Filtering in SAS is done with an ``if`` or ``where`` statement, on one
or more columns.

.. code-block:: sas

   data tips;
       set tips;
       if total_bill > 10;
   run;

   data tips;
       set tips;
       where total_bill > 10;
       /* equivalent in this case - where happens before the
          DATA step begins and can also be used in PROC statements */
   run;

DataFrames can be filtered in multiple ways; the most intuitive of which is using
:ref:`boolean indexing <indexing.boolean>`

.. ipython:: python

   tips[tips['total_bill'] > 10].head()

If/then logic
~~~~~~~~~~~~~

In SAS, if/then logic can be used to create new columns.

.. code-block:: sas

   data tips;
       set tips;
       format bucket $4.;

       if total_bill < 10 then bucket = 'low';
       else bucket = 'high';
   run;

The same operation in pandas can be accomplished using
the ``where`` method from ``numpy``.

.. ipython:: python

   tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
   tips.head()

.. ipython:: python
   :suppress:

   tips = tips.drop('bucket', axis=1)

Date functionality
~~~~~~~~~~~~~~~~~~

SAS provides a variety of functions to do operations on
date/datetime columns.

.. code-block:: sas

   data tips;
       set tips;
       format date1 date2 date1_plusmonth mmddyy10.;
       date1 = mdy(1, 15, 2013);
       date2 = mdy(2, 15, 2015);
       date1_year = year(date1);
       date2_month = month(date2);
       * shift date to beginning of next interval;
       date1_next = intnx('MONTH', date1, 1);
       * count intervals between dates;
       months_between = intck('MONTH', date1, date2);
   run;

The equivalent pandas operations are shown below.  In addition to these
functions pandas supports other Time Series features
not available in Base SAS (such as resampling and custom offsets) -
see the :ref:`timeseries documentation<timeseries>` for more details.

.. ipython:: python

   tips['date1'] = pd.Timestamp('2013-01-15')
   tips['date2'] = pd.Timestamp('2015-02-15')
   tips['date1_year'] = tips['date1'].dt.year
   tips['date2_month'] = tips['date2'].dt.month
   tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
   tips['months_between'] = (
       tips['date2'].dt.to_period('M') - tips['date1'].dt.to_period('M'))

   tips[['date1', 'date2', 'date1_year', 'date2_month',
         'date1_next', 'months_between']].head()

.. ipython:: python
   :suppress:

   tips = tips.drop(['date1', 'date2', 'date1_year',
                     'date2_month', 'date1_next', 'months_between'], axis=1)

Selection of columns
~~~~~~~~~~~~~~~~~~~~

SAS provides keywords in the ``DATA`` step to select,
drop, and rename columns.

.. code-block:: sas

   data tips;
       set tips;
       keep sex total_bill tip;
   run;

   data tips;
       set tips;
       drop sex;
   run;

   data tips;
       set tips;
       rename total_bill=total_bill_2;
   run;

The same operations are expressed in pandas below.

.. ipython:: python

   # keep
   tips[['sex', 'total_bill', 'tip']].head()

   # drop
   tips.drop('sex', axis=1).head()

   # rename
   tips.rename(columns={'total_bill': 'total_bill_2'}).head()


Sorting by values
~~~~~~~~~~~~~~~~~

Sorting in SAS is accomplished via ``PROC SORT``

.. code-block:: sas

   proc sort data=tips;
       by sex total_bill;
   run;

pandas objects have a :meth:`~DataFrame.sort_values` method, which
takes a list of columns to sort by.

.. ipython:: python

   tips = tips.sort_values(['sex', 'total_bill'])
   tips.head()


String processing
-----------------

Length
~~~~~~

SAS determines the length of a character string with the
`LENGTHN <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002284668.htm>`__
and `LENGTHC <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002283942.htm>`__
functions. ``LENGTHN`` excludes trailing blanks and ``LENGTHC`` includes trailing blanks.

.. code-block:: sas

   data _null_;
   set tips;
   put(LENGTHN(time));
   put(LENGTHC(time));
   run;

Python determines the length of a character string with the ``len`` function.
``len`` includes trailing blanks.  Use ``len`` and ``rstrip`` to exclude
trailing blanks.

.. ipython:: python

   tips['time'].str.len().head()
   tips['time'].str.rstrip().str.len().head()


Find
~~~~

SAS determines the position of a character in a string with the
`FINDW <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002978282.htm>`__ function.
``FINDW`` takes the string defined by the first argument and searches for the first position of the substring
you supply as the second argument.

.. code-block:: sas

   data _null_;
   set tips;
   put(FINDW(sex,'ale'));
   run;

Python determines the position of a character in a string with the
``find`` function.  ``find`` searches for the first position of the
substring.  If the substring is found, the function returns its
position.  Keep in mind that Python indexes are zero-based and
the function will return -1 if it fails to find the substring.

.. ipython:: python

   tips['sex'].str.find("ale").head()


Substring
~~~~~~~~~

SAS extracts a substring from a string based on its position with the
`SUBSTR <https://www2.sas.com/proceedings/sugi25/25/cc/25p088.pdf>`__ function.

.. code-block:: sas

   data _null_;
   set tips;
   put(substr(sex,1,1));
   run;

With pandas you can use ``[]`` notation to extract a substring
from a string by position locations.  Keep in mind that Python
indexes are zero-based.

.. ipython:: python

   tips['sex'].str[0:1].head()


Scan
~~~~

The SAS `SCAN <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000214639.htm>`__
function returns the nth word from a string. The first argument is the string you want to parse and the
second argument specifies which word you want to extract.

.. code-block:: sas

   data firstlast;
   input String $60.;
   First_Name = scan(string, 1);
   Last_Name = scan(string, -1);
   datalines2;
   John Smith;
   Jane Cook;
   ;;;
   run;

Python extracts a substring from a string based on its text
by using regular expressions. There are much more powerful
approaches, but this just shows a simple approach.

.. ipython:: python

   firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})
   firstlast['First_Name'] = firstlast['String'].str.split(" ", expand=True)[0]
   firstlast['Last_Name'] = firstlast['String'].str.rsplit(" ", expand=True)[0]
   firstlast


Upcase, lowcase, and propcase
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The SAS `UPCASE <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000245965.htm>`__
`LOWCASE <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000245912.htm>`__ and
`PROPCASE <https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/a002598106.htm>`__
functions change the case of the argument.

.. code-block:: sas

   data firstlast;
   input String $60.;
   string_up = UPCASE(string);
   string_low = LOWCASE(string);
   string_prop = PROPCASE(string);
   datalines2;
   John Smith;
   Jane Cook;
   ;;;
   run;

The equivalent Python functions are ``upper``, ``lower``, and ``title``.

.. ipython:: python

   firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})
   firstlast['string_up'] = firstlast['String'].str.upper()
   firstlast['string_low'] = firstlast['String'].str.lower()
   firstlast['string_prop'] = firstlast['String'].str.title()
   firstlast

Merging
-------

The following tables will be used in the merge examples

.. ipython:: python

   df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
                       'value': np.random.randn(4)})
   df1
   df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
                       'value': np.random.randn(4)})
   df2

In SAS, data must be explicitly sorted before merging.  Different
types of joins are accomplished using the ``in=`` dummy
variables to track whether a match was found in one or both
input frames.

.. code-block:: sas

   proc sort data=df1;
       by key;
   run;

   proc sort data=df2;
       by key;
   run;

   data left_join inner_join right_join outer_join;
       merge df1(in=a) df2(in=b);

       if a and b then output inner_join;
       if a then output left_join;
       if b then output right_join;
       if a or b then output outer_join;
   run;

pandas DataFrames have a :meth:`~DataFrame.merge` method, which provides
similar functionality.  Note that the data does not have
to be sorted ahead of time, and different join
types are accomplished via the ``how`` keyword.

.. ipython:: python

   inner_join = df1.merge(df2, on=['key'], how='inner')
   inner_join

   left_join = df1.merge(df2, on=['key'], how='left')
   left_join

   right_join = df1.merge(df2, on=['key'], how='right')
   right_join

   outer_join = df1.merge(df2, on=['key'], how='outer')
   outer_join


Missing data
------------

Like SAS, pandas has a representation for missing data - which is the
special float value ``NaN`` (not a number).  Many of the semantics
are the same, for example missing data propagates through numeric
operations, and is ignored by default for aggregations.

.. ipython:: python

   outer_join
   outer_join['value_x'] + outer_join['value_y']
   outer_join['value_x'].sum()

One difference is that missing data cannot be compared to its sentinel value.
For example, in SAS you could do this to filter missing values.

.. code-block:: sas

   data outer_join_nulls;
       set outer_join;
       if value_x = .;
   run;

   data outer_join_no_nulls;
       set outer_join;
       if value_x ^= .;
   run;

Which doesn't work in pandas.  Instead, the ``pd.isna`` or ``pd.notna`` functions
should be used for comparisons.

.. ipython:: python

   outer_join[pd.isna(outer_join['value_x'])]
   outer_join[pd.notna(outer_join['value_x'])]

pandas also provides a variety of methods to work with missing data - some of
which would be challenging to express in SAS. For example, there are methods to
drop all rows with any missing values, replacing missing values with a specified
value, like the mean, or forward filling from previous rows. See the
:ref:`missing data documentation<missing_data>` for more.

.. ipython:: python

   outer_join.dropna()
   outer_join.fillna(method='ffill')
   outer_join['value_x'].fillna(outer_join['value_x'].mean())


GroupBy
-------

Aggregation
~~~~~~~~~~~

SAS's PROC SUMMARY can be used to group by one or
more key variables and compute aggregations on
numeric columns.

.. code-block:: sas

   proc summary data=tips nway;
       class sex smoker;
       var total_bill tip;
       output out=tips_summed sum=;
   run;

pandas provides a flexible ``groupby`` mechanism that
allows similar aggregations.  See the :ref:`groupby documentation<groupby>`
for more details and examples.

.. ipython:: python

   tips_summed = tips.groupby(['sex', 'smoker'])[['total_bill', 'tip']].sum()
   tips_summed.head()


Transformation
~~~~~~~~~~~~~~

In SAS, if the group aggregations need to be used with
the original frame, it must be merged back together.  For
example, to subtract the mean for each observation by smoker group.

.. code-block:: sas

   proc summary data=tips missing nway;
       class smoker;
       var total_bill;
       output out=smoker_means mean(total_bill)=group_bill;
   run;

   proc sort data=tips;
       by smoker;
   run;

   data tips;
       merge tips(in=a) smoker_means(in=b);
       by smoker;
       adj_total_bill = total_bill - group_bill;
       if a and b;
   run;


pandas ``groupby`` provides a ``transform`` mechanism that allows
these type of operations to be succinctly expressed in one
operation.

.. ipython:: python

   gb = tips.groupby('smoker')['total_bill']
   tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
   tips.head()


By group processing
~~~~~~~~~~~~~~~~~~~

In addition to aggregation, pandas ``groupby`` can be used to
replicate most other by group processing from SAS. For example,
this ``DATA`` step reads the data by sex/smoker group and filters to
the first entry for each.

.. code-block:: sas

   proc sort data=tips;
      by sex smoker;
   run;

   data tips_first;
       set tips;
       by sex smoker;
       if FIRST.sex or FIRST.smoker then output;
   run;

In pandas this would be written as:

.. ipython:: python

   tips.groupby(['sex', 'smoker']).first()


Other considerations
--------------------

Disk vs memory
~~~~~~~~~~~~~~

pandas operates exclusively in memory, where a SAS data set exists on disk.
This means that the size of data able to be loaded in pandas is limited by your
machine's memory, but also that the operations on that data may be faster.

If out of core processing is needed, one possibility is the
`dask.dataframe <https://dask.pydata.org/en/latest/dataframe.html>`_
library (currently in development) which
provides a subset of pandas functionality for an on-disk ``DataFrame``

Data interop
~~~~~~~~~~~~

pandas provides a :func:`read_sas` method that can read SAS data saved in
the XPORT or SAS7BDAT binary format.

.. code-block:: sas

   libname xportout xport 'transport-file.xpt';
   data xportout.tips;
       set tips(rename=(total_bill=tbill));
       * xport variable names limited to 6 characters;
   run;

.. code-block:: python

   df = pd.read_sas('transport-file.xpt')
   df = pd.read_sas('binary-file.sas7bdat')

You can also specify the file format directly. By default, pandas will try
to infer the file format based on its extension.

.. code-block:: python

   df = pd.read_sas('transport-file.xpt', format='xport')
   df = pd.read_sas('binary-file.sas7bdat', format='sas7bdat')

XPORT is a relatively limited format and the parsing of it is not as
optimized as some of the other pandas readers. An alternative way
to interop data between SAS and pandas is to serialize to csv.

.. code-block:: ipython

   # version 0.17, 10M rows

   In [8]: %time df = pd.read_sas('big.xpt')
   Wall time: 14.6 s

   In [9]: %time df = pd.read_csv('big.csv')
   Wall time: 4.86 s