1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
.. _compare_with_stata:
{{ header }}
Comparison with Stata
*********************
For potential users coming from `Stata <https://en.wikipedia.org/wiki/Stata>`__
this page is meant to demonstrate how different Stata operations would be
performed in pandas.
If you're new to pandas, you might want to first read through :ref:`10 Minutes to pandas<10min>`
to familiarize yourself with the library.
As is customary, we import pandas and NumPy as follows. This means that we can refer to the
libraries as ``pd`` and ``np``, respectively, for the rest of the document.
.. ipython:: python
import pandas as pd
import numpy as np
.. note::
Throughout this tutorial, the pandas ``DataFrame`` will be displayed by calling
``df.head()``, which displays the first N (default 5) rows of the ``DataFrame``.
This is often used in interactive work (e.g. `Jupyter notebook
<https://jupyter.org/>`_ or terminal) -- the equivalent in Stata would be:
.. code-block:: stata
list in 1/5
Data structures
---------------
General terminology translation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. csv-table::
:header: "pandas", "Stata"
:widths: 20, 20
``DataFrame``, data set
column, variable
row, observation
groupby, bysort
``NaN``, ``.``
``DataFrame`` / ``Series``
~~~~~~~~~~~~~~~~~~~~~~~~~~
A ``DataFrame`` in pandas is analogous to a Stata data set -- a two-dimensional
data source with labeled columns that can be of different types. As will be
shown in this document, almost any operation that can be applied to a data set
in Stata can also be accomplished in pandas.
A ``Series`` is the data structure that represents one column of a
``DataFrame``. Stata doesn't have a separate data structure for a single column,
but in general, working with a ``Series`` is analogous to referencing a column
of a data set in Stata.
``Index``
~~~~~~~~~
Every ``DataFrame`` and ``Series`` has an ``Index`` -- labels on the
*rows* of the data. Stata does not have an exactly analogous concept. In Stata, a data set's
rows are essentially unlabeled, other than an implicit integer index that can be
accessed with ``_n``.
In pandas, if no index is specified, an integer index is also used by default
(first row = 0, second row = 1, and so on). While using a labeled ``Index`` or
``MultiIndex`` can enable sophisticated analyses and is ultimately an important
part of pandas to understand, for this comparison we will essentially ignore the
``Index`` and just treat the ``DataFrame`` as a collection of columns. Please
see the :ref:`indexing documentation<indexing>` for much more on how to use an
``Index`` effectively.
Data input / output
-------------------
Constructing a DataFrame from values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A Stata data set can be built from specified values by
placing the data after an ``input`` statement and
specifying the column names.
.. code-block:: stata
input x y
1 2
3 4
5 6
end
A pandas ``DataFrame`` can be constructed in many different ways,
but for a small number of values, it is often convenient to specify it as
a Python dictionary, where the keys are the column names
and the values are the data.
.. ipython:: python
df = pd.DataFrame({'x': [1, 3, 5], 'y': [2, 4, 6]})
df
Reading external data
~~~~~~~~~~~~~~~~~~~~~
Like Stata, pandas provides utilities for reading in data from
many formats. The ``tips`` data set, found within the pandas
tests (`csv <https://raw.github.com/pandas-dev/pandas/master/pandas/tests/io/data/csv/tips.csv>`_)
will be used in many of the following examples.
Stata provides ``import delimited`` to read csv data into a data set in memory.
If the ``tips.csv`` file is in the current working directory, we can import it as follows.
.. code-block:: stata
import delimited tips.csv
The pandas method is :func:`read_csv`, which works similarly. Additionally, it will automatically download
the data set if presented with a url.
.. ipython:: python
url = ('https://raw.github.com/pandas-dev'
'/pandas/master/pandas/tests/io/data/csv/tips.csv')
tips = pd.read_csv(url)
tips.head()
Like ``import delimited``, :func:`read_csv` can take a number of parameters to specify
how the data should be parsed. For example, if the data were instead tab delimited,
did not have column names, and existed in the current working directory,
the pandas command would be:
.. code-block:: python
tips = pd.read_csv('tips.csv', sep='\t', header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)
Pandas can also read Stata data sets in ``.dta`` format with the :func:`read_stata` function.
.. code-block:: python
df = pd.read_stata('data.dta')
In addition to text/csv and Stata files, pandas supports a variety of other data formats
such as Excel, SAS, HDF5, Parquet, and SQL databases. These are all read via a ``pd.read_*``
function. See the :ref:`IO documentation<io>` for more details.
Exporting data
~~~~~~~~~~~~~~
The inverse of ``import delimited`` in Stata is ``export delimited``
.. code-block:: stata
export delimited tips2.csv
Similarly in pandas, the opposite of ``read_csv`` is :meth:`DataFrame.to_csv`.
.. code-block:: python
tips.to_csv('tips2.csv')
Pandas can also export to Stata file format with the :meth:`DataFrame.to_stata` method.
.. code-block:: python
tips.to_stata('tips2.dta')
Data operations
---------------
Operations on columns
~~~~~~~~~~~~~~~~~~~~~
In Stata, arbitrary math expressions can be used with the ``generate`` and
``replace`` commands on new or existing columns. The ``drop`` command drops
the column from the data set.
.. code-block:: stata
replace total_bill = total_bill - 2
generate new_bill = total_bill / 2
drop new_bill
pandas provides similar vectorized operations by
specifying the individual ``Series`` in the ``DataFrame``.
New columns can be assigned in the same way. The :meth:`DataFrame.drop` method
drops a column from the ``DataFrame``.
.. ipython:: python
tips['total_bill'] = tips['total_bill'] - 2
tips['new_bill'] = tips['total_bill'] / 2
tips.head()
tips = tips.drop('new_bill', axis=1)
Filtering
~~~~~~~~~
Filtering in Stata is done with an ``if`` clause on one or more columns.
.. code-block:: stata
list if total_bill > 10
DataFrames can be filtered in multiple ways; the most intuitive of which is using
:ref:`boolean indexing <indexing.boolean>`.
.. ipython:: python
tips[tips['total_bill'] > 10].head()
If/then logic
~~~~~~~~~~~~~
In Stata, an ``if`` clause can also be used to create new columns.
.. code-block:: stata
generate bucket = "low" if total_bill < 10
replace bucket = "high" if total_bill >= 10
The same operation in pandas can be accomplished using
the ``where`` method from ``numpy``.
.. ipython:: python
tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
tips.head()
.. ipython:: python
:suppress:
tips = tips.drop('bucket', axis=1)
Date functionality
~~~~~~~~~~~~~~~~~~
Stata provides a variety of functions to do operations on
date/datetime columns.
.. code-block:: stata
generate date1 = mdy(1, 15, 2013)
generate date2 = date("Feb152015", "MDY")
generate date1_year = year(date1)
generate date2_month = month(date2)
* shift date to beginning of next month
generate date1_next = mdy(month(date1) + 1, 1, year(date1)) if month(date1) != 12
replace date1_next = mdy(1, 1, year(date1) + 1) if month(date1) == 12
generate months_between = mofd(date2) - mofd(date1)
list date1 date2 date1_year date2_month date1_next months_between
The equivalent pandas operations are shown below. In addition to these
functions, pandas supports other Time Series features
not available in Stata (such as time zone handling and custom offsets) --
see the :ref:`timeseries documentation<timeseries>` for more details.
.. ipython:: python
tips['date1'] = pd.Timestamp('2013-01-15')
tips['date2'] = pd.Timestamp('2015-02-15')
tips['date1_year'] = tips['date1'].dt.year
tips['date2_month'] = tips['date2'].dt.month
tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
tips['months_between'] = (tips['date2'].dt.to_period('M')
- tips['date1'].dt.to_period('M'))
tips[['date1', 'date2', 'date1_year', 'date2_month', 'date1_next',
'months_between']].head()
.. ipython:: python
:suppress:
tips = tips.drop(['date1', 'date2', 'date1_year', 'date2_month',
'date1_next', 'months_between'], axis=1)
Selection of columns
~~~~~~~~~~~~~~~~~~~~
Stata provides keywords to select, drop, and rename columns.
.. code-block:: stata
keep sex total_bill tip
drop sex
rename total_bill total_bill_2
The same operations are expressed in pandas below. Note that in contrast to Stata, these
operations do not happen in place. To make these changes persist, assign the operation back
to a variable.
.. ipython:: python
# keep
tips[['sex', 'total_bill', 'tip']].head()
# drop
tips.drop('sex', axis=1).head()
# rename
tips.rename(columns={'total_bill': 'total_bill_2'}).head()
Sorting by values
~~~~~~~~~~~~~~~~~
Sorting in Stata is accomplished via ``sort``
.. code-block:: stata
sort sex total_bill
pandas objects have a :meth:`DataFrame.sort_values` method, which
takes a list of columns to sort by.
.. ipython:: python
tips = tips.sort_values(['sex', 'total_bill'])
tips.head()
String processing
-----------------
Finding length of string
~~~~~~~~~~~~~~~~~~~~~~~~
Stata determines the length of a character string with the :func:`strlen` and
:func:`ustrlen` functions for ASCII and Unicode strings, respectively.
.. code-block:: stata
generate strlen_time = strlen(time)
generate ustrlen_time = ustrlen(time)
Python determines the length of a character string with the ``len`` function.
In Python 3, all strings are Unicode strings. ``len`` includes trailing blanks.
Use ``len`` and ``rstrip`` to exclude trailing blanks.
.. ipython:: python
tips['time'].str.len().head()
tips['time'].str.rstrip().str.len().head()
Finding position of substring
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Stata determines the position of a character in a string with the :func:`strpos` function.
This takes the string defined by the first argument and searches for the
first position of the substring you supply as the second argument.
.. code-block:: stata
generate str_position = strpos(sex, "ale")
Python determines the position of a character in a string with the
:func:`find` function. ``find`` searches for the first position of the
substring. If the substring is found, the function returns its
position. Keep in mind that Python indexes are zero-based and
the function will return -1 if it fails to find the substring.
.. ipython:: python
tips['sex'].str.find("ale").head()
Extracting substring by position
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Stata extracts a substring from a string based on its position with the :func:`substr` function.
.. code-block:: stata
generate short_sex = substr(sex, 1, 1)
With pandas you can use ``[]`` notation to extract a substring
from a string by position locations. Keep in mind that Python
indexes are zero-based.
.. ipython:: python
tips['sex'].str[0:1].head()
Extracting nth word
~~~~~~~~~~~~~~~~~~~
The Stata :func:`word` function returns the nth word from a string.
The first argument is the string you want to parse and the
second argument specifies which word you want to extract.
.. code-block:: stata
clear
input str20 string
"John Smith"
"Jane Cook"
end
generate first_name = word(name, 1)
generate last_name = word(name, -1)
Python extracts a substring from a string based on its text
by using regular expressions. There are much more powerful
approaches, but this just shows a simple approach.
.. ipython:: python
firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})
firstlast['First_Name'] = firstlast['string'].str.split(" ", expand=True)[0]
firstlast['Last_Name'] = firstlast['string'].str.rsplit(" ", expand=True)[0]
firstlast
Changing case
~~~~~~~~~~~~~
The Stata :func:`strupper`, :func:`strlower`, :func:`strproper`,
:func:`ustrupper`, :func:`ustrlower`, and :func:`ustrtitle` functions
change the case of ASCII and Unicode strings, respectively.
.. code-block:: stata
clear
input str20 string
"John Smith"
"Jane Cook"
end
generate upper = strupper(string)
generate lower = strlower(string)
generate title = strproper(string)
list
The equivalent Python functions are ``upper``, ``lower``, and ``title``.
.. ipython:: python
firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})
firstlast['upper'] = firstlast['string'].str.upper()
firstlast['lower'] = firstlast['string'].str.lower()
firstlast['title'] = firstlast['string'].str.title()
firstlast
Merging
-------
The following tables will be used in the merge examples
.. ipython:: python
df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
'value': np.random.randn(4)})
df1
df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
'value': np.random.randn(4)})
df2
In Stata, to perform a merge, one data set must be in memory
and the other must be referenced as a file name on disk. In
contrast, Python must have both ``DataFrames`` already in memory.
By default, Stata performs an outer join, where all observations
from both data sets are left in memory after the merge. One can
keep only observations from the initial data set, the merged data set,
or the intersection of the two by using the values created in the
``_merge`` variable.
.. code-block:: stata
* First create df2 and save to disk
clear
input str1 key
B
D
D
E
end
generate value = rnormal()
save df2.dta
* Now create df1 in memory
clear
input str1 key
A
B
C
D
end
generate value = rnormal()
preserve
* Left join
merge 1:n key using df2.dta
keep if _merge == 1
* Right join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 2
* Inner join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 3
* Outer join
restore
merge 1:n key using df2.dta
pandas DataFrames have a :meth:`DataFrame.merge` method, which provides
similar functionality. Note that different join
types are accomplished via the ``how`` keyword.
.. ipython:: python
inner_join = df1.merge(df2, on=['key'], how='inner')
inner_join
left_join = df1.merge(df2, on=['key'], how='left')
left_join
right_join = df1.merge(df2, on=['key'], how='right')
right_join
outer_join = df1.merge(df2, on=['key'], how='outer')
outer_join
Missing data
------------
Like Stata, pandas has a representation for missing data -- the
special float value ``NaN`` (not a number). Many of the semantics
are the same; for example missing data propagates through numeric
operations, and is ignored by default for aggregations.
.. ipython:: python
outer_join
outer_join['value_x'] + outer_join['value_y']
outer_join['value_x'].sum()
One difference is that missing data cannot be compared to its sentinel value.
For example, in Stata you could do this to filter missing values.
.. code-block:: stata
* Keep missing values
list if value_x == .
* Keep non-missing values
list if value_x != .
This doesn't work in pandas. Instead, the :func:`pd.isna` or :func:`pd.notna` functions
should be used for comparisons.
.. ipython:: python
outer_join[pd.isna(outer_join['value_x'])]
outer_join[pd.notna(outer_join['value_x'])]
Pandas also provides a variety of methods to work with missing data -- some of
which would be challenging to express in Stata. For example, there are methods to
drop all rows with any missing values, replacing missing values with a specified
value, like the mean, or forward filling from previous rows. See the
:ref:`missing data documentation<missing_data>` for more.
.. ipython:: python
# Drop rows with any missing value
outer_join.dropna()
# Fill forwards
outer_join.fillna(method='ffill')
# Impute missing values with the mean
outer_join['value_x'].fillna(outer_join['value_x'].mean())
GroupBy
-------
Aggregation
~~~~~~~~~~~
Stata's ``collapse`` can be used to group by one or
more key variables and compute aggregations on
numeric columns.
.. code-block:: stata
collapse (sum) total_bill tip, by(sex smoker)
pandas provides a flexible ``groupby`` mechanism that
allows similar aggregations. See the :ref:`groupby documentation<groupby>`
for more details and examples.
.. ipython:: python
tips_summed = tips.groupby(['sex', 'smoker'])[['total_bill', 'tip']].sum()
tips_summed.head()
Transformation
~~~~~~~~~~~~~~
In Stata, if the group aggregations need to be used with the
original data set, one would usually use ``bysort`` with :func:`egen`.
For example, to subtract the mean for each observation by smoker group.
.. code-block:: stata
bysort sex smoker: egen group_bill = mean(total_bill)
generate adj_total_bill = total_bill - group_bill
pandas ``groupby`` provides a ``transform`` mechanism that allows
these type of operations to be succinctly expressed in one
operation.
.. ipython:: python
gb = tips.groupby('smoker')['total_bill']
tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
tips.head()
By group processing
~~~~~~~~~~~~~~~~~~~
In addition to aggregation, pandas ``groupby`` can be used to
replicate most other ``bysort`` processing from Stata. For example,
the following example lists the first observation in the current
sort order by sex/smoker group.
.. code-block:: stata
bysort sex smoker: list if _n == 1
In pandas this would be written as:
.. ipython:: python
tips.groupby(['sex', 'smoker']).first()
Other considerations
--------------------
Disk vs memory
~~~~~~~~~~~~~~
Pandas and Stata both operate exclusively in memory. This means that the size of
data able to be loaded in pandas is limited by your machine's memory.
If out of core processing is needed, one possibility is the
`dask.dataframe <https://dask.pydata.org/en/latest/dataframe.html>`_
library, which provides a subset of pandas functionality for an
on-disk ``DataFrame``.
|