1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
# flake8: noqa
__docformat__ = "restructuredtext"
# Let users know if they're missing any of our hard dependencies
hard_dependencies = ("numpy", "pytz", "dateutil")
missing_dependencies = []
for dependency in hard_dependencies:
try:
__import__(dependency)
except ImportError as e:
missing_dependencies.append(f"{dependency}: {e}")
if missing_dependencies:
raise ImportError(
"Unable to import required dependencies:\n" + "\n".join(missing_dependencies)
)
del hard_dependencies, dependency, missing_dependencies
# numpy compat
from pandas.compat.numpy import (
_np_version_under1p16,
_np_version_under1p17,
_np_version_under1p18,
_is_numpy_dev,
)
try:
from pandas._libs import hashtable as _hashtable, lib as _lib, tslib as _tslib
except ImportError as e: # pragma: no cover
# hack but overkill to use re
module = str(e).replace("cannot import name ", "")
raise ImportError(
f"C extension: {module} not built. If you want to import "
"pandas from the source directory, you may need to run "
"'python setup.py build_ext --inplace --force' to build the C extensions first."
) from e
from pandas._config import (
get_option,
set_option,
reset_option,
describe_option,
option_context,
options,
)
# let init-time option registration happen
import pandas.core.config_init
from pandas.core.api import (
# dtype
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
UInt8Dtype,
UInt16Dtype,
UInt32Dtype,
UInt64Dtype,
CategoricalDtype,
PeriodDtype,
IntervalDtype,
DatetimeTZDtype,
StringDtype,
BooleanDtype,
# missing
NA,
isna,
isnull,
notna,
notnull,
# indexes
Index,
CategoricalIndex,
Int64Index,
UInt64Index,
RangeIndex,
Float64Index,
MultiIndex,
IntervalIndex,
TimedeltaIndex,
DatetimeIndex,
PeriodIndex,
IndexSlice,
# tseries
NaT,
Period,
period_range,
Timedelta,
timedelta_range,
Timestamp,
date_range,
bdate_range,
Interval,
interval_range,
DateOffset,
# conversion
to_numeric,
to_datetime,
to_timedelta,
# misc
Grouper,
factorize,
unique,
value_counts,
NamedAgg,
array,
Categorical,
set_eng_float_format,
Series,
DataFrame,
)
from pandas.core.arrays.sparse import SparseDtype
from pandas.tseries.api import infer_freq
from pandas.tseries import offsets
from pandas.core.computation.api import eval
from pandas.core.reshape.api import (
concat,
lreshape,
melt,
wide_to_long,
merge,
merge_asof,
merge_ordered,
crosstab,
pivot,
pivot_table,
get_dummies,
cut,
qcut,
)
import pandas.api
from pandas.util._print_versions import show_versions
from pandas.io.api import (
# excel
ExcelFile,
ExcelWriter,
read_excel,
# parsers
read_csv,
read_fwf,
read_table,
# pickle
read_pickle,
to_pickle,
# pytables
HDFStore,
read_hdf,
# sql
read_sql,
read_sql_query,
read_sql_table,
# misc
read_clipboard,
read_parquet,
read_orc,
read_feather,
read_gbq,
read_html,
read_json,
read_stata,
read_sas,
read_spss,
)
from pandas.io.json import _json_normalize as json_normalize
from pandas.util._tester import test
import pandas.testing
import pandas.arrays
from .__version import version as __version__
# GH 27101
# TODO: remove Panel compat in 1.0
if pandas.compat.PY37:
def __getattr__(name):
import warnings
if name == "Panel":
warnings.warn(
"The Panel class is removed from pandas. Accessing it "
"from the top-level namespace will also be removed in the next version",
FutureWarning,
stacklevel=2,
)
class Panel:
pass
return Panel
elif name == "datetime":
warnings.warn(
"The pandas.datetime class is deprecated "
"and will be removed from pandas in a future version. "
"Import from datetime module instead.",
FutureWarning,
stacklevel=2,
)
from datetime import datetime as dt
return dt
elif name == "np":
warnings.warn(
"The pandas.np module is deprecated "
"and will be removed from pandas in a future version. "
"Import numpy directly instead",
FutureWarning,
stacklevel=2,
)
import numpy as np
return np
elif name in {"SparseSeries", "SparseDataFrame"}:
warnings.warn(
f"The {name} class is removed from pandas. Accessing it from "
"the top-level namespace will also be removed in the next version",
FutureWarning,
stacklevel=2,
)
return type(name, (), {})
elif name == "SparseArray":
warnings.warn(
"The pandas.SparseArray class is deprecated "
"and will be removed from pandas in a future version. "
"Use pandas.arrays.SparseArray instead.",
FutureWarning,
stacklevel=2,
)
from pandas.core.arrays.sparse import SparseArray as _SparseArray
return _SparseArray
raise AttributeError(f"module 'pandas' has no attribute '{name}'")
else:
class Panel:
pass
class SparseDataFrame:
pass
class SparseSeries:
pass
class __numpy:
def __init__(self):
import numpy as np
import warnings
self.np = np
self.warnings = warnings
def __getattr__(self, item):
self.warnings.warn(
"The pandas.np module is deprecated "
"and will be removed from pandas in a future version. "
"Import numpy directly instead",
FutureWarning,
stacklevel=2,
)
try:
return getattr(self.np, item)
except AttributeError as err:
raise AttributeError(f"module numpy has no attribute {item}") from err
np = __numpy()
class __Datetime(type):
from datetime import datetime as dt
datetime = dt
def __getattr__(cls, item):
cls.emit_warning()
try:
return getattr(cls.datetime, item)
except AttributeError as err:
raise AttributeError(
f"module datetime has no attribute {item}"
) from err
def __instancecheck__(cls, other):
return isinstance(other, cls.datetime)
class __DatetimeSub(metaclass=__Datetime):
def emit_warning(dummy=0):
import warnings
warnings.warn(
"The pandas.datetime class is deprecated "
"and will be removed from pandas in a future version. "
"Import from datetime instead.",
FutureWarning,
stacklevel=3,
)
def __new__(cls, *args, **kwargs):
cls.emit_warning()
from datetime import datetime as dt
return dt(*args, **kwargs)
datetime = __DatetimeSub
class __SparseArray(type):
from pandas.core.arrays.sparse import SparseArray as sa
SparseArray = sa
def __instancecheck__(cls, other):
return isinstance(other, cls.SparseArray)
class __SparseArraySub(metaclass=__SparseArray):
def emit_warning(dummy=0):
import warnings
warnings.warn(
"The pandas.SparseArray class is deprecated "
"and will be removed from pandas in a future version. "
"Use pandas.arrays.SparseArray instead.",
FutureWarning,
stacklevel=3,
)
def __new__(cls, *args, **kwargs):
cls.emit_warning()
from pandas.core.arrays.sparse import SparseArray as sa
return sa(*args, **kwargs)
SparseArray = __SparseArraySub
# module level doc-string
__doc__ = """
pandas - a powerful data analysis and manipulation library for Python
=====================================================================
**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.
Main Features
-------------
Here are just a few of the things that pandas does well:
- Easy handling of missing data in floating point as well as non-floating
point data.
- Size mutability: columns can be inserted and deleted from DataFrame and
higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned
to a set of labels, or the user can simply ignore the labels and let
`Series`, `DataFrame`, etc. automatically align the data for you in
computations.
- Powerful, flexible group by functionality to perform split-apply-combine
operations on data sets, for both aggregating and transforming data.
- Make it easy to convert ragged, differently-indexed data in other Python
and NumPy data structures into DataFrame objects.
- Intelligent label-based slicing, fancy indexing, and subsetting of large
data sets.
- Intuitive merging and joining data sets.
- Flexible reshaping and pivoting of data sets.
- Hierarchical labeling of axes (possible to have multiple labels per tick).
- Robust IO tools for loading data from flat files (CSV and delimited),
Excel files, databases, and saving/loading data from the ultrafast HDF5
format.
- Time series-specific functionality: date range generation and frequency
conversion, moving window statistics, date shifting and lagging.
"""
|