File: test_resampler_grouper.py

package info (click to toggle)
pandas 1.1.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,284 kB
  • sloc: python: 292,793; ansic: 8,591; sh: 608; makefile: 94
file content (362 lines) | stat: -rw-r--r-- 11,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from textwrap import dedent

import numpy as np
import pytest

from pandas.util._test_decorators import async_mark

import pandas as pd
from pandas import DataFrame, Series, Timestamp
import pandas._testing as tm
from pandas.core.indexes.datetimes import date_range

test_frame = DataFrame(
    {"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)},
    index=date_range("1/1/2000", freq="s", periods=40),
)


@async_mark()
async def test_tab_complete_ipython6_warning(ip):
    from IPython.core.completer import provisionalcompleter

    code = dedent(
        """\
    import pandas._testing as tm
    s = tm.makeTimeSeries()
    rs = s.resample("D")
    """
    )
    await ip.run_code(code)

    # TODO: remove it when Ipython updates
    # GH 33567, jedi version raises Deprecation warning in Ipython
    import jedi

    if jedi.__version__ < "0.17.0" or jedi.__version__ >= "0.18.0":
        warning = tm.assert_produces_warning(None)
    else:
        warning = tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False)
    with warning:
        with provisionalcompleter("ignore"):
            list(ip.Completer.completions("rs.", 1))


def test_deferred_with_groupby():

    # GH 12486
    # support deferred resample ops with groupby
    data = [
        ["2010-01-01", "A", 2],
        ["2010-01-02", "A", 3],
        ["2010-01-05", "A", 8],
        ["2010-01-10", "A", 7],
        ["2010-01-13", "A", 3],
        ["2010-01-01", "B", 5],
        ["2010-01-03", "B", 2],
        ["2010-01-04", "B", 1],
        ["2010-01-11", "B", 7],
        ["2010-01-14", "B", 3],
    ]

    df = DataFrame(data, columns=["date", "id", "score"])
    df.date = pd.to_datetime(df.date)

    def f(x):
        return x.set_index("date").resample("D").asfreq()

    expected = df.groupby("id").apply(f)
    result = df.set_index("date").groupby("id").resample("D").asfreq()
    tm.assert_frame_equal(result, expected)

    df = DataFrame(
        {
            "date": pd.date_range(start="2016-01-01", periods=4, freq="W"),
            "group": [1, 1, 2, 2],
            "val": [5, 6, 7, 8],
        }
    ).set_index("date")

    def f(x):
        return x.resample("1D").ffill()

    expected = df.groupby("group").apply(f)
    result = df.groupby("group").resample("1D").ffill()
    tm.assert_frame_equal(result, expected)


def test_getitem():
    g = test_frame.groupby("A")

    expected = g.B.apply(lambda x: x.resample("2s").mean())

    result = g.resample("2s").B.mean()
    tm.assert_series_equal(result, expected)

    result = g.B.resample("2s").mean()
    tm.assert_series_equal(result, expected)

    result = g.resample("2s").mean().B
    tm.assert_series_equal(result, expected)


def test_getitem_multiple():

    # GH 13174
    # multiple calls after selection causing an issue with aliasing
    data = [{"id": 1, "buyer": "A"}, {"id": 2, "buyer": "B"}]
    df = DataFrame(data, index=pd.date_range("2016-01-01", periods=2))
    r = df.groupby("id").resample("1D")
    result = r["buyer"].count()
    expected = Series(
        [1, 1],
        index=pd.MultiIndex.from_tuples(
            [(1, Timestamp("2016-01-01")), (2, Timestamp("2016-01-02"))],
            names=["id", None],
        ),
        name="buyer",
    )
    tm.assert_series_equal(result, expected)

    result = r["buyer"].count()
    tm.assert_series_equal(result, expected)


def test_groupby_resample_on_api_with_getitem():
    # GH 17813
    df = pd.DataFrame(
        {"id": list("aabbb"), "date": pd.date_range("1-1-2016", periods=5), "data": 1}
    )
    exp = df.set_index("date").groupby("id").resample("2D")["data"].sum()
    result = df.groupby("id").resample("2D", on="date")["data"].sum()
    tm.assert_series_equal(result, exp)


def test_groupby_with_origin():
    # GH 31809

    freq = "1399min"  # prime number that is smaller than 24h
    start, end = "1/1/2000 00:00:00", "1/31/2000 00:00"
    middle = "1/15/2000 00:00:00"

    rng = pd.date_range(start, end, freq="1231min")  # prime number
    ts = pd.Series(np.random.randn(len(rng)), index=rng)
    ts2 = ts[middle:end]

    # proves that grouper without a fixed origin does not work
    # when dealing with unusual frequencies
    simple_grouper = pd.Grouper(freq=freq)
    count_ts = ts.groupby(simple_grouper).agg("count")
    count_ts = count_ts[middle:end]
    count_ts2 = ts2.groupby(simple_grouper).agg("count")
    with pytest.raises(AssertionError):
        tm.assert_index_equal(count_ts.index, count_ts2.index)

    # test origin on 1970-01-01 00:00:00
    origin = pd.Timestamp(0)
    adjusted_grouper = pd.Grouper(freq=freq, origin=origin)
    adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count")
    adjusted_count_ts = adjusted_count_ts[middle:end]
    adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count")
    tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2)

    # test origin on 2049-10-18 20:00:00
    origin_future = pd.Timestamp(0) + pd.Timedelta("1399min") * 30_000
    adjusted_grouper2 = pd.Grouper(freq=freq, origin=origin_future)
    adjusted2_count_ts = ts.groupby(adjusted_grouper2).agg("count")
    adjusted2_count_ts = adjusted2_count_ts[middle:end]
    adjusted2_count_ts2 = ts2.groupby(adjusted_grouper2).agg("count")
    tm.assert_series_equal(adjusted2_count_ts, adjusted2_count_ts2)

    # both grouper use an adjusted timestamp that is a multiple of 1399 min
    # they should be equals even if the adjusted_timestamp is in the future
    tm.assert_series_equal(adjusted_count_ts, adjusted2_count_ts2)


def test_nearest():

    # GH 17496
    # Resample nearest
    index = pd.date_range("1/1/2000", periods=3, freq="T")
    result = Series(range(3), index=index).resample("20s").nearest()

    expected = Series(
        [0, 0, 1, 1, 1, 2, 2],
        index=pd.DatetimeIndex(
            [
                "2000-01-01 00:00:00",
                "2000-01-01 00:00:20",
                "2000-01-01 00:00:40",
                "2000-01-01 00:01:00",
                "2000-01-01 00:01:20",
                "2000-01-01 00:01:40",
                "2000-01-01 00:02:00",
            ],
            dtype="datetime64[ns]",
            freq="20S",
        ),
    )
    tm.assert_series_equal(result, expected)


def test_methods():
    g = test_frame.groupby("A")
    r = g.resample("2s")

    for f in ["first", "last", "median", "sem", "sum", "mean", "min", "max"]:
        result = getattr(r, f)()
        expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
        tm.assert_frame_equal(result, expected)

    for f in ["size"]:
        result = getattr(r, f)()
        expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
        tm.assert_series_equal(result, expected)

    for f in ["count"]:
        result = getattr(r, f)()
        expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
        tm.assert_frame_equal(result, expected)

    # series only
    for f in ["nunique"]:
        result = getattr(r.B, f)()
        expected = g.B.apply(lambda x: getattr(x.resample("2s"), f)())
        tm.assert_series_equal(result, expected)

    for f in ["nearest", "backfill", "ffill", "asfreq"]:
        result = getattr(r, f)()
        expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
        tm.assert_frame_equal(result, expected)

    result = r.ohlc()
    expected = g.apply(lambda x: x.resample("2s").ohlc())
    tm.assert_frame_equal(result, expected)

    for f in ["std", "var"]:
        result = getattr(r, f)(ddof=1)
        expected = g.apply(lambda x: getattr(x.resample("2s"), f)(ddof=1))
        tm.assert_frame_equal(result, expected)


def test_apply():

    g = test_frame.groupby("A")
    r = g.resample("2s")

    # reduction
    expected = g.resample("2s").sum()

    def f(x):
        return x.resample("2s").sum()

    result = r.apply(f)
    tm.assert_frame_equal(result, expected)

    def f(x):
        return x.resample("2s").apply(lambda y: y.sum())

    result = g.apply(f)
    tm.assert_frame_equal(result, expected)


def test_apply_with_mutated_index():
    # GH 15169
    index = pd.date_range("1-1-2015", "12-31-15", freq="D")
    df = DataFrame(data={"col1": np.random.rand(len(index))}, index=index)

    def f(x):
        s = Series([1, 2], index=["a", "b"])
        return s

    expected = df.groupby(pd.Grouper(freq="M")).apply(f)

    result = df.resample("M").apply(f)
    tm.assert_frame_equal(result, expected)

    # A case for series
    expected = df["col1"].groupby(pd.Grouper(freq="M")).apply(f)
    result = df["col1"].resample("M").apply(f)
    tm.assert_series_equal(result, expected)


def test_apply_columns_multilevel():
    # GH 16231
    cols = pd.MultiIndex.from_tuples([("A", "a", "", "one"), ("B", "b", "i", "two")])
    ind = date_range(start="2017-01-01", freq="15Min", periods=8)
    df = DataFrame(np.array([0] * 16).reshape(8, 2), index=ind, columns=cols)
    agg_dict = {col: (np.sum if col[3] == "one" else np.mean) for col in df.columns}
    result = df.resample("H").apply(lambda x: agg_dict[x.name](x))
    expected = DataFrame(
        np.array([0] * 4).reshape(2, 2),
        index=date_range(start="2017-01-01", freq="1H", periods=2),
        columns=pd.MultiIndex.from_tuples(
            [("A", "a", "", "one"), ("B", "b", "i", "two")]
        ),
    )
    tm.assert_frame_equal(result, expected)


def test_resample_groupby_with_label():
    # GH 13235
    index = date_range("2000-01-01", freq="2D", periods=5)
    df = DataFrame(index=index, data={"col0": [0, 0, 1, 1, 2], "col1": [1, 1, 1, 1, 1]})
    result = df.groupby("col0").resample("1W", label="left").sum()

    mi = [
        np.array([0, 0, 1, 2]),
        pd.to_datetime(
            np.array(["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"])
        ),
    ]
    mindex = pd.MultiIndex.from_arrays(mi, names=["col0", None])
    expected = DataFrame(
        data={"col0": [0, 0, 2, 2], "col1": [1, 1, 2, 1]}, index=mindex
    )

    tm.assert_frame_equal(result, expected)


def test_consistency_with_window():

    # consistent return values with window
    df = test_frame
    expected = pd.Int64Index([1, 2, 3], name="A")
    result = df.groupby("A").resample("2s").mean()
    assert result.index.nlevels == 2
    tm.assert_index_equal(result.index.levels[0], expected)

    result = df.groupby("A").rolling(20).mean()
    assert result.index.nlevels == 2
    tm.assert_index_equal(result.index.levels[0], expected)


def test_median_duplicate_columns():
    # GH 14233

    df = DataFrame(
        np.random.randn(20, 3),
        columns=list("aaa"),
        index=pd.date_range("2012-01-01", periods=20, freq="s"),
    )
    df2 = df.copy()
    df2.columns = ["a", "b", "c"]
    expected = df2.resample("5s").median()
    result = df.resample("5s").median()
    expected.columns = result.columns
    tm.assert_frame_equal(result, expected)


def test_apply_to_one_column_of_df():
    # GH: 36951
    df = pd.DataFrame(
        {"col": range(10), "col1": range(10, 20)},
        index=pd.date_range("2012-01-01", periods=10, freq="20min"),
    )
    result = df.resample("H").apply(lambda group: group.col.sum())
    expected = pd.Series(
        [3, 12, 21, 9], index=pd.date_range("2012-01-01", periods=4, freq="H")
    )
    tm.assert_series_equal(result, expected)
    result = df.resample("H").apply(lambda group: group["col"].sum())
    tm.assert_series_equal(result, expected)