1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
from textwrap import dedent
import numpy as np
import pytest
from pandas.util._test_decorators import async_mark
import pandas as pd
from pandas import DataFrame, Series, Timestamp
import pandas._testing as tm
from pandas.core.indexes.datetimes import date_range
test_frame = DataFrame(
{"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)},
index=date_range("1/1/2000", freq="s", periods=40),
)
@async_mark()
async def test_tab_complete_ipython6_warning(ip):
from IPython.core.completer import provisionalcompleter
code = dedent(
"""\
import pandas._testing as tm
s = tm.makeTimeSeries()
rs = s.resample("D")
"""
)
await ip.run_code(code)
# TODO: remove it when Ipython updates
# GH 33567, jedi version raises Deprecation warning in Ipython
import jedi
if jedi.__version__ < "0.17.0" or jedi.__version__ >= "0.18.0":
warning = tm.assert_produces_warning(None)
else:
warning = tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False)
with warning:
with provisionalcompleter("ignore"):
list(ip.Completer.completions("rs.", 1))
def test_deferred_with_groupby():
# GH 12486
# support deferred resample ops with groupby
data = [
["2010-01-01", "A", 2],
["2010-01-02", "A", 3],
["2010-01-05", "A", 8],
["2010-01-10", "A", 7],
["2010-01-13", "A", 3],
["2010-01-01", "B", 5],
["2010-01-03", "B", 2],
["2010-01-04", "B", 1],
["2010-01-11", "B", 7],
["2010-01-14", "B", 3],
]
df = DataFrame(data, columns=["date", "id", "score"])
df.date = pd.to_datetime(df.date)
def f(x):
return x.set_index("date").resample("D").asfreq()
expected = df.groupby("id").apply(f)
result = df.set_index("date").groupby("id").resample("D").asfreq()
tm.assert_frame_equal(result, expected)
df = DataFrame(
{
"date": pd.date_range(start="2016-01-01", periods=4, freq="W"),
"group": [1, 1, 2, 2],
"val": [5, 6, 7, 8],
}
).set_index("date")
def f(x):
return x.resample("1D").ffill()
expected = df.groupby("group").apply(f)
result = df.groupby("group").resample("1D").ffill()
tm.assert_frame_equal(result, expected)
def test_getitem():
g = test_frame.groupby("A")
expected = g.B.apply(lambda x: x.resample("2s").mean())
result = g.resample("2s").B.mean()
tm.assert_series_equal(result, expected)
result = g.B.resample("2s").mean()
tm.assert_series_equal(result, expected)
result = g.resample("2s").mean().B
tm.assert_series_equal(result, expected)
def test_getitem_multiple():
# GH 13174
# multiple calls after selection causing an issue with aliasing
data = [{"id": 1, "buyer": "A"}, {"id": 2, "buyer": "B"}]
df = DataFrame(data, index=pd.date_range("2016-01-01", periods=2))
r = df.groupby("id").resample("1D")
result = r["buyer"].count()
expected = Series(
[1, 1],
index=pd.MultiIndex.from_tuples(
[(1, Timestamp("2016-01-01")), (2, Timestamp("2016-01-02"))],
names=["id", None],
),
name="buyer",
)
tm.assert_series_equal(result, expected)
result = r["buyer"].count()
tm.assert_series_equal(result, expected)
def test_groupby_resample_on_api_with_getitem():
# GH 17813
df = pd.DataFrame(
{"id": list("aabbb"), "date": pd.date_range("1-1-2016", periods=5), "data": 1}
)
exp = df.set_index("date").groupby("id").resample("2D")["data"].sum()
result = df.groupby("id").resample("2D", on="date")["data"].sum()
tm.assert_series_equal(result, exp)
def test_groupby_with_origin():
# GH 31809
freq = "1399min" # prime number that is smaller than 24h
start, end = "1/1/2000 00:00:00", "1/31/2000 00:00"
middle = "1/15/2000 00:00:00"
rng = pd.date_range(start, end, freq="1231min") # prime number
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts2 = ts[middle:end]
# proves that grouper without a fixed origin does not work
# when dealing with unusual frequencies
simple_grouper = pd.Grouper(freq=freq)
count_ts = ts.groupby(simple_grouper).agg("count")
count_ts = count_ts[middle:end]
count_ts2 = ts2.groupby(simple_grouper).agg("count")
with pytest.raises(AssertionError):
tm.assert_index_equal(count_ts.index, count_ts2.index)
# test origin on 1970-01-01 00:00:00
origin = pd.Timestamp(0)
adjusted_grouper = pd.Grouper(freq=freq, origin=origin)
adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count")
adjusted_count_ts = adjusted_count_ts[middle:end]
adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count")
tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2)
# test origin on 2049-10-18 20:00:00
origin_future = pd.Timestamp(0) + pd.Timedelta("1399min") * 30_000
adjusted_grouper2 = pd.Grouper(freq=freq, origin=origin_future)
adjusted2_count_ts = ts.groupby(adjusted_grouper2).agg("count")
adjusted2_count_ts = adjusted2_count_ts[middle:end]
adjusted2_count_ts2 = ts2.groupby(adjusted_grouper2).agg("count")
tm.assert_series_equal(adjusted2_count_ts, adjusted2_count_ts2)
# both grouper use an adjusted timestamp that is a multiple of 1399 min
# they should be equals even if the adjusted_timestamp is in the future
tm.assert_series_equal(adjusted_count_ts, adjusted2_count_ts2)
def test_nearest():
# GH 17496
# Resample nearest
index = pd.date_range("1/1/2000", periods=3, freq="T")
result = Series(range(3), index=index).resample("20s").nearest()
expected = Series(
[0, 0, 1, 1, 1, 2, 2],
index=pd.DatetimeIndex(
[
"2000-01-01 00:00:00",
"2000-01-01 00:00:20",
"2000-01-01 00:00:40",
"2000-01-01 00:01:00",
"2000-01-01 00:01:20",
"2000-01-01 00:01:40",
"2000-01-01 00:02:00",
],
dtype="datetime64[ns]",
freq="20S",
),
)
tm.assert_series_equal(result, expected)
def test_methods():
g = test_frame.groupby("A")
r = g.resample("2s")
for f in ["first", "last", "median", "sem", "sum", "mean", "min", "max"]:
result = getattr(r, f)()
expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
tm.assert_frame_equal(result, expected)
for f in ["size"]:
result = getattr(r, f)()
expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
tm.assert_series_equal(result, expected)
for f in ["count"]:
result = getattr(r, f)()
expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
tm.assert_frame_equal(result, expected)
# series only
for f in ["nunique"]:
result = getattr(r.B, f)()
expected = g.B.apply(lambda x: getattr(x.resample("2s"), f)())
tm.assert_series_equal(result, expected)
for f in ["nearest", "backfill", "ffill", "asfreq"]:
result = getattr(r, f)()
expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
tm.assert_frame_equal(result, expected)
result = r.ohlc()
expected = g.apply(lambda x: x.resample("2s").ohlc())
tm.assert_frame_equal(result, expected)
for f in ["std", "var"]:
result = getattr(r, f)(ddof=1)
expected = g.apply(lambda x: getattr(x.resample("2s"), f)(ddof=1))
tm.assert_frame_equal(result, expected)
def test_apply():
g = test_frame.groupby("A")
r = g.resample("2s")
# reduction
expected = g.resample("2s").sum()
def f(x):
return x.resample("2s").sum()
result = r.apply(f)
tm.assert_frame_equal(result, expected)
def f(x):
return x.resample("2s").apply(lambda y: y.sum())
result = g.apply(f)
tm.assert_frame_equal(result, expected)
def test_apply_with_mutated_index():
# GH 15169
index = pd.date_range("1-1-2015", "12-31-15", freq="D")
df = DataFrame(data={"col1": np.random.rand(len(index))}, index=index)
def f(x):
s = Series([1, 2], index=["a", "b"])
return s
expected = df.groupby(pd.Grouper(freq="M")).apply(f)
result = df.resample("M").apply(f)
tm.assert_frame_equal(result, expected)
# A case for series
expected = df["col1"].groupby(pd.Grouper(freq="M")).apply(f)
result = df["col1"].resample("M").apply(f)
tm.assert_series_equal(result, expected)
def test_apply_columns_multilevel():
# GH 16231
cols = pd.MultiIndex.from_tuples([("A", "a", "", "one"), ("B", "b", "i", "two")])
ind = date_range(start="2017-01-01", freq="15Min", periods=8)
df = DataFrame(np.array([0] * 16).reshape(8, 2), index=ind, columns=cols)
agg_dict = {col: (np.sum if col[3] == "one" else np.mean) for col in df.columns}
result = df.resample("H").apply(lambda x: agg_dict[x.name](x))
expected = DataFrame(
np.array([0] * 4).reshape(2, 2),
index=date_range(start="2017-01-01", freq="1H", periods=2),
columns=pd.MultiIndex.from_tuples(
[("A", "a", "", "one"), ("B", "b", "i", "two")]
),
)
tm.assert_frame_equal(result, expected)
def test_resample_groupby_with_label():
# GH 13235
index = date_range("2000-01-01", freq="2D", periods=5)
df = DataFrame(index=index, data={"col0": [0, 0, 1, 1, 2], "col1": [1, 1, 1, 1, 1]})
result = df.groupby("col0").resample("1W", label="left").sum()
mi = [
np.array([0, 0, 1, 2]),
pd.to_datetime(
np.array(["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"])
),
]
mindex = pd.MultiIndex.from_arrays(mi, names=["col0", None])
expected = DataFrame(
data={"col0": [0, 0, 2, 2], "col1": [1, 1, 2, 1]}, index=mindex
)
tm.assert_frame_equal(result, expected)
def test_consistency_with_window():
# consistent return values with window
df = test_frame
expected = pd.Int64Index([1, 2, 3], name="A")
result = df.groupby("A").resample("2s").mean()
assert result.index.nlevels == 2
tm.assert_index_equal(result.index.levels[0], expected)
result = df.groupby("A").rolling(20).mean()
assert result.index.nlevels == 2
tm.assert_index_equal(result.index.levels[0], expected)
def test_median_duplicate_columns():
# GH 14233
df = DataFrame(
np.random.randn(20, 3),
columns=list("aaa"),
index=pd.date_range("2012-01-01", periods=20, freq="s"),
)
df2 = df.copy()
df2.columns = ["a", "b", "c"]
expected = df2.resample("5s").median()
result = df.resample("5s").median()
expected.columns = result.columns
tm.assert_frame_equal(result, expected)
def test_apply_to_one_column_of_df():
# GH: 36951
df = pd.DataFrame(
{"col": range(10), "col1": range(10, 20)},
index=pd.date_range("2012-01-01", periods=10, freq="20min"),
)
result = df.resample("H").apply(lambda group: group.col.sum())
expected = pd.Series(
[3, 12, 21, 9], index=pd.date_range("2012-01-01", periods=4, freq="H")
)
tm.assert_series_equal(result, expected)
result = df.resample("H").apply(lambda group: group["col"].sum())
tm.assert_series_equal(result, expected)
|