1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
#!/usr/bin/env python3
"""
Parts of this file were taken from the pyzmq project
(https://github.com/zeromq/pyzmq) which have been permitted for use under the
BSD license. Parts are from lxml (https://github.com/lxml/lxml)
"""
import argparse
from distutils.sysconfig import get_config_vars
from distutils.version import LooseVersion
import multiprocessing
import os
from os.path import join as pjoin
import platform
import shutil
import sys
import pkg_resources
from setuptools import Command, find_packages, setup
# versioning
import versioneer
cmdclass = versioneer.get_cmdclass()
def is_platform_windows():
return sys.platform == "win32" or sys.platform == "cygwin"
def is_platform_mac():
return sys.platform == "darwin"
min_numpy_ver = "1.15.4"
min_cython_ver = "0.29.21" # note: sync with pyproject.toml
try:
import Cython
_CYTHON_VERSION = Cython.__version__
from Cython.Build import cythonize
_CYTHON_INSTALLED = _CYTHON_VERSION >= LooseVersion(min_cython_ver)
except ImportError:
_CYTHON_VERSION = None
_CYTHON_INSTALLED = False
cythonize = lambda x, *args, **kwargs: x # dummy func
# The import of Extension must be after the import of Cython, otherwise
# we do not get the appropriately patched class.
# See https://cython.readthedocs.io/en/latest/src/userguide/source_files_and_compilation.html # noqa
from distutils.extension import Extension # noqa: E402 isort:skip
from distutils.command.build import build # noqa: E402 isort:skip
if _CYTHON_INSTALLED:
from Cython.Distutils.old_build_ext import old_build_ext as _build_ext
cython = True
from Cython import Tempita as tempita
else:
from distutils.command.build_ext import build_ext as _build_ext
cython = False
_pxi_dep_template = {
"algos": ["_libs/algos_common_helper.pxi.in", "_libs/algos_take_helper.pxi.in"],
"hashtable": [
"_libs/hashtable_class_helper.pxi.in",
"_libs/hashtable_func_helper.pxi.in",
],
"index": ["_libs/index_class_helper.pxi.in"],
"sparse": ["_libs/sparse_op_helper.pxi.in"],
"interval": ["_libs/intervaltree.pxi.in"],
}
_pxifiles = []
_pxi_dep = {}
for module, files in _pxi_dep_template.items():
pxi_files = [pjoin("pandas", x) for x in files]
_pxifiles.extend(pxi_files)
_pxi_dep[module] = pxi_files
class build_ext(_build_ext):
@classmethod
def render_templates(cls, pxifiles):
for pxifile in pxifiles:
# build pxifiles first, template extension must be .pxi.in
assert pxifile.endswith(".pxi.in")
outfile = pxifile[:-3]
if (
os.path.exists(outfile)
and os.stat(pxifile).st_mtime < os.stat(outfile).st_mtime
):
# if .pxi.in is not updated, no need to output .pxi
continue
with open(pxifile, "r") as f:
tmpl = f.read()
pyxcontent = tempita.sub(tmpl)
with open(outfile, "w") as f:
f.write(pyxcontent)
def build_extensions(self):
# if building from c files, don't need to
# generate template output
if cython:
self.render_templates(_pxifiles)
super().build_extensions()
DESCRIPTION = "Powerful data structures for data analysis, time series, and statistics"
LONG_DESCRIPTION = """
**pandas** is a Python package that provides fast, flexible, and expressive data
structures designed to make working with structured (tabular, multidimensional,
potentially heterogeneous) and time series data both easy and intuitive. It
aims to be the fundamental high-level building block for doing practical,
**real world** data analysis in Python. Additionally, it has the broader goal
of becoming **the most powerful and flexible open source data analysis /
manipulation tool available in any language**. It is already well on its way
toward this goal.
pandas is well suited for many different kinds of data:
- Tabular data with heterogeneously-typed columns, as in an SQL table or
Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and
column labels
- Any other form of observational / statistical data sets. The data actually
need not be labeled at all to be placed into a pandas data structure
The two primary data structures of pandas, Series (1-dimensional) and DataFrame
(2-dimensional), handle the vast majority of typical use cases in finance,
statistics, social science, and many areas of engineering. For R users,
DataFrame provides everything that R's ``data.frame`` provides and much
more. pandas is built on top of `NumPy <https://www.numpy.org>`__ and is
intended to integrate well within a scientific computing environment with many
other 3rd party libraries.
Here are just a few of the things that pandas does well:
- Easy handling of **missing data** (represented as NaN) in floating point as
well as non-floating point data
- Size mutability: columns can be **inserted and deleted** from DataFrame and
higher dimensional objects
- Automatic and explicit **data alignment**: objects can be explicitly
aligned to a set of labels, or the user can simply ignore the labels and
let `Series`, `DataFrame`, etc. automatically align the data for you in
computations
- Powerful, flexible **group by** functionality to perform
split-apply-combine operations on data sets, for both aggregating and
transforming data
- Make it **easy to convert** ragged, differently-indexed data in other
Python and NumPy data structures into DataFrame objects
- Intelligent label-based **slicing**, **fancy indexing**, and **subsetting**
of large data sets
- Intuitive **merging** and **joining** data sets
- Flexible **reshaping** and pivoting of data sets
- **Hierarchical** labeling of axes (possible to have multiple labels per
tick)
- Robust IO tools for loading data from **flat files** (CSV and delimited),
Excel files, databases, and saving / loading data from the ultrafast **HDF5
format**
- **Time series**-specific functionality: date range generation and frequency
conversion, moving window statistics, date shifting and lagging.
Many of these principles are here to address the shortcomings frequently
experienced using other languages / scientific research environments. For data
scientists, working with data is typically divided into multiple stages:
munging and cleaning data, analyzing / modeling it, then organizing the results
of the analysis into a form suitable for plotting or tabular display. pandas is
the ideal tool for all of these tasks.
"""
DISTNAME = "pandas"
LICENSE = "BSD"
AUTHOR = "The PyData Development Team"
EMAIL = "pydata@googlegroups.com"
URL = "https://pandas.pydata.org"
DOWNLOAD_URL = ""
PROJECT_URLS = {
"Bug Tracker": "https://github.com/pandas-dev/pandas/issues",
"Documentation": "https://pandas.pydata.org/pandas-docs/stable/",
"Source Code": "https://github.com/pandas-dev/pandas",
}
CLASSIFIERS = [
"Development Status :: 5 - Production/Stable",
"Environment :: Console",
"Operating System :: OS Independent",
"Intended Audience :: Science/Research",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Cython",
"Topic :: Scientific/Engineering",
]
class CleanCommand(Command):
"""Custom distutils command to clean the .so and .pyc files."""
user_options = [("all", "a", "")]
def initialize_options(self):
self.all = True
self._clean_me = []
self._clean_trees = []
base = pjoin("pandas", "_libs", "src")
tsbase = pjoin("pandas", "_libs", "tslibs", "src")
dt = pjoin(tsbase, "datetime")
util = pjoin("pandas", "util")
parser = pjoin(base, "parser")
ujson_python = pjoin(base, "ujson", "python")
ujson_lib = pjoin(base, "ujson", "lib")
self._clean_exclude = [
pjoin(dt, "np_datetime.c"),
pjoin(dt, "np_datetime_strings.c"),
pjoin(parser, "tokenizer.c"),
pjoin(parser, "io.c"),
pjoin(ujson_python, "ujson.c"),
pjoin(ujson_python, "objToJSON.c"),
pjoin(ujson_python, "JSONtoObj.c"),
pjoin(ujson_python, "date_conversions.c"),
pjoin(ujson_lib, "ultrajsonenc.c"),
pjoin(ujson_lib, "ultrajsondec.c"),
pjoin(util, "move.c"),
]
for root, dirs, files in os.walk("pandas"):
for f in files:
filepath = pjoin(root, f)
if filepath in self._clean_exclude:
continue
if os.path.splitext(f)[-1] in (
".pyc",
".so",
".o",
".pyo",
".pyd",
".c",
".cpp",
".orig",
):
self._clean_me.append(filepath)
for d in dirs:
if d == "__pycache__":
self._clean_trees.append(pjoin(root, d))
# clean the generated pxi files
for pxifile in _pxifiles:
pxifile = pxifile.replace(".pxi.in", ".pxi")
self._clean_me.append(pxifile)
for d in ("build", "dist"):
if os.path.exists(d):
self._clean_trees.append(d)
def finalize_options(self):
pass
def run(self):
for clean_me in self._clean_me:
try:
os.unlink(clean_me)
except OSError:
pass
for clean_tree in self._clean_trees:
try:
shutil.rmtree(clean_tree)
except OSError:
pass
# we need to inherit from the versioneer
# class as it encodes the version info
sdist_class = cmdclass["sdist"]
class CheckSDist(sdist_class):
"""Custom sdist that ensures Cython has compiled all pyx files to c."""
_pyxfiles = [
"pandas/_libs/lib.pyx",
"pandas/_libs/hashtable.pyx",
"pandas/_libs/tslib.pyx",
"pandas/_libs/index.pyx",
"pandas/_libs/internals.pyx",
"pandas/_libs/algos.pyx",
"pandas/_libs/join.pyx",
"pandas/_libs/indexing.pyx",
"pandas/_libs/interval.pyx",
"pandas/_libs/hashing.pyx",
"pandas/_libs/missing.pyx",
"pandas/_libs/reduction.pyx",
"pandas/_libs/testing.pyx",
"pandas/_libs/sparse.pyx",
"pandas/_libs/ops.pyx",
"pandas/_libs/parsers.pyx",
"pandas/_libs/tslibs/base.pyx",
"pandas/_libs/tslibs/ccalendar.pyx",
"pandas/_libs/tslibs/dtypes.pyx",
"pandas/_libs/tslibs/period.pyx",
"pandas/_libs/tslibs/strptime.pyx",
"pandas/_libs/tslibs/np_datetime.pyx",
"pandas/_libs/tslibs/timedeltas.pyx",
"pandas/_libs/tslibs/timestamps.pyx",
"pandas/_libs/tslibs/timezones.pyx",
"pandas/_libs/tslibs/conversion.pyx",
"pandas/_libs/tslibs/fields.pyx",
"pandas/_libs/tslibs/offsets.pyx",
"pandas/_libs/tslibs/parsing.pyx",
"pandas/_libs/tslibs/tzconversion.pyx",
"pandas/_libs/tslibs/vectorized.pyx",
"pandas/_libs/window/indexers.pyx",
"pandas/_libs/writers.pyx",
"pandas/io/sas/sas.pyx",
]
_cpp_pyxfiles = [
"pandas/_libs/window/aggregations.pyx",
]
def initialize_options(self):
sdist_class.initialize_options(self)
def run(self):
if "cython" in cmdclass:
self.run_command("cython")
else:
# If we are not running cython then
# compile the extensions correctly
pyx_files = [(self._pyxfiles, "c"), (self._cpp_pyxfiles, "cpp")]
for pyxfiles, extension in pyx_files:
for pyxfile in pyxfiles:
sourcefile = pyxfile[:-3] + extension
msg = (
f"{extension}-source file '{sourcefile}' not found.\n"
"Run 'setup.py cython' before sdist."
)
assert os.path.isfile(sourcefile), msg
sdist_class.run(self)
class CheckingBuildExt(build_ext):
"""
Subclass build_ext to get clearer report if Cython is necessary.
"""
def check_cython_extensions(self, extensions):
for ext in extensions:
for src in ext.sources:
if not os.path.exists(src):
print(f"{ext.name}: -> [{ext.sources}]")
raise Exception(
f"""Cython-generated file '{src}' not found.
Cython is required to compile pandas from a development branch.
Please install Cython or download a release package of pandas.
"""
)
def build_extensions(self):
self.check_cython_extensions(self.extensions)
build_ext.build_extensions(self)
class CythonCommand(build_ext):
"""
Custom distutils command subclassed from Cython.Distutils.build_ext
to compile pyx->c, and stop there. All this does is override the
C-compile method build_extension() with a no-op.
"""
def build_extension(self, ext):
pass
class DummyBuildSrc(Command):
""" numpy's build_src command interferes with Cython's build_ext.
"""
user_options = []
def initialize_options(self):
self.py_modules_dict = {}
def finalize_options(self):
pass
def run(self):
pass
cmdclass.update({"clean": CleanCommand, "build": build})
cmdclass["build_ext"] = CheckingBuildExt
if cython:
suffix = ".pyx"
cmdclass["cython"] = CythonCommand
else:
suffix = ".c"
cmdclass["build_src"] = DummyBuildSrc
# ----------------------------------------------------------------------
# Preparation of compiler arguments
debugging_symbols_requested = "--with-debugging-symbols" in sys.argv
if debugging_symbols_requested:
sys.argv.remove("--with-debugging-symbols")
if sys.byteorder == "big":
endian_macro = [("__BIG_ENDIAN__", "1")]
else:
endian_macro = [("__LITTLE_ENDIAN__", "1")]
extra_compile_args = []
extra_link_args = []
if is_platform_windows():
if debugging_symbols_requested:
extra_compile_args.append("/Z7")
extra_link_args.append("/DEBUG")
else:
# PANDAS_CI=1 is set by ci/setup_env.sh
if os.environ.get("PANDAS_CI", "0") == "1":
extra_compile_args.append("-Werror")
if debugging_symbols_requested:
extra_compile_args.append("-g")
# Build for at least macOS 10.9 when compiling on a 10.9 system or above,
# overriding CPython distuitls behaviour which is to target the version that
# python was built for. This may be overridden by setting
# MACOSX_DEPLOYMENT_TARGET before calling setup.py
if is_platform_mac():
if "MACOSX_DEPLOYMENT_TARGET" not in os.environ:
current_system = platform.mac_ver()[0]
python_target = get_config_vars().get(
"MACOSX_DEPLOYMENT_TARGET", current_system
)
if (
LooseVersion(python_target) < "10.9"
and LooseVersion(current_system) >= "10.9"
):
os.environ["MACOSX_DEPLOYMENT_TARGET"] = "10.9"
if sys.version_info[:2] == (3, 8): # GH 33239
extra_compile_args.append("-Wno-error=deprecated-declarations")
# https://github.com/pandas-dev/pandas/issues/35559
extra_compile_args.append("-Wno-error=unreachable-code")
# enable coverage by building cython files by setting the environment variable
# "PANDAS_CYTHON_COVERAGE" (with a Truthy value) or by running build_ext
# with `--with-cython-coverage`enabled
linetrace = os.environ.get("PANDAS_CYTHON_COVERAGE", False)
if "--with-cython-coverage" in sys.argv:
linetrace = True
sys.argv.remove("--with-cython-coverage")
# Note: if not using `cythonize`, coverage can be enabled by
# pinning `ext.cython_directives = directives` to each ext in extensions.
# github.com/cython/cython/wiki/enhancements-compilerdirectives#in-setuppy
directives = {"linetrace": False, "language_level": 3}
macros = []
if linetrace:
# https://pypkg.com/pypi/pytest-cython/f/tests/example-project/setup.py
directives["linetrace"] = True
macros = [("CYTHON_TRACE", "1"), ("CYTHON_TRACE_NOGIL", "1")]
# in numpy>=1.16.0, silence build warnings about deprecated API usage
# we can't do anything about these warnings because they stem from
# cython+numpy version mismatches.
macros.append(("NPY_NO_DEPRECATED_API", "0"))
if "-Werror" in extra_compile_args:
try:
import numpy as np
except ImportError:
pass
else:
if np.__version__ < LooseVersion("1.16.0"):
extra_compile_args.remove("-Werror")
# ----------------------------------------------------------------------
# Specification of Dependencies
# TODO: Need to check to see if e.g. `linetrace` has changed and possibly
# re-compile.
def maybe_cythonize(extensions, *args, **kwargs):
"""
Render tempita templates before calling cythonize. This is skipped for
* clean
* sdist
"""
if "clean" in sys.argv or "sdist" in sys.argv:
# See https://github.com/cython/cython/issues/1495
return extensions
elif not cython:
# GH#28836 raise a helfpul error message
if _CYTHON_VERSION:
raise RuntimeError(
f"Cannot cythonize with old Cython version ({_CYTHON_VERSION} "
f"installed, needs {min_cython_ver})"
)
raise RuntimeError("Cannot cythonize without Cython installed.")
numpy_incl = pkg_resources.resource_filename("numpy", "core/include")
# TODO: Is this really necessary here?
for ext in extensions:
if hasattr(ext, "include_dirs") and numpy_incl not in ext.include_dirs:
ext.include_dirs.append(numpy_incl)
# reuse any parallel arguments provided for compilation to cythonize
parser = argparse.ArgumentParser()
parser.add_argument("-j", type=int)
parser.add_argument("--parallel", type=int)
parsed, _ = parser.parse_known_args()
nthreads = 0
if parsed.parallel:
nthreads = parsed.parallel
elif parsed.j:
nthreads = parsed.j
kwargs["nthreads"] = nthreads
build_ext.render_templates(_pxifiles)
return cythonize(extensions, *args, **kwargs)
def srcpath(name=None, suffix=".pyx", subdir="src"):
return pjoin("pandas", subdir, name + suffix)
lib_depends = ["pandas/_libs/src/parse_helper.h"]
klib_include = ["pandas/_libs/src/klib"]
tseries_depends = [
"pandas/_libs/tslibs/src/datetime/np_datetime.h",
"pandas/_libs/tslibs/src/datetime/np_datetime_strings.h",
]
ext_data = {
"_libs.algos": {
"pyxfile": "_libs/algos",
"include": klib_include,
"depends": _pxi_dep["algos"],
},
"_libs.groupby": {"pyxfile": "_libs/groupby"},
"_libs.hashing": {"pyxfile": "_libs/hashing", "depends": []},
"_libs.hashtable": {
"pyxfile": "_libs/hashtable",
"include": klib_include,
"depends": (["pandas/_libs/src/klib/khash_python.h"] + _pxi_dep["hashtable"]),
},
"_libs.index": {
"pyxfile": "_libs/index",
"include": klib_include,
"depends": _pxi_dep["index"],
},
"_libs.indexing": {"pyxfile": "_libs/indexing"},
"_libs.internals": {"pyxfile": "_libs/internals"},
"_libs.interval": {
"pyxfile": "_libs/interval",
"include": klib_include,
"depends": _pxi_dep["interval"],
},
"_libs.join": {"pyxfile": "_libs/join", "include": klib_include},
"_libs.lib": {
"pyxfile": "_libs/lib",
"depends": lib_depends + tseries_depends,
"include": klib_include, # due to tokenizer import
"sources": ["pandas/_libs/src/parser/tokenizer.c"],
},
"_libs.missing": {"pyxfile": "_libs/missing", "depends": tseries_depends},
"_libs.parsers": {
"pyxfile": "_libs/parsers",
"include": klib_include + ["pandas/_libs/src"],
"depends": [
"pandas/_libs/src/parser/tokenizer.h",
"pandas/_libs/src/parser/io.h",
],
"sources": [
"pandas/_libs/src/parser/tokenizer.c",
"pandas/_libs/src/parser/io.c",
],
},
"_libs.reduction": {"pyxfile": "_libs/reduction"},
"_libs.ops": {"pyxfile": "_libs/ops"},
"_libs.ops_dispatch": {"pyxfile": "_libs/ops_dispatch"},
"_libs.properties": {"pyxfile": "_libs/properties"},
"_libs.reshape": {"pyxfile": "_libs/reshape", "depends": []},
"_libs.sparse": {"pyxfile": "_libs/sparse", "depends": _pxi_dep["sparse"]},
"_libs.tslib": {"pyxfile": "_libs/tslib", "depends": tseries_depends},
"_libs.tslibs.base": {"pyxfile": "_libs/tslibs/base"},
"_libs.tslibs.ccalendar": {"pyxfile": "_libs/tslibs/ccalendar"},
"_libs.tslibs.dtypes": {"pyxfile": "_libs/tslibs/dtypes"},
"_libs.tslibs.conversion": {
"pyxfile": "_libs/tslibs/conversion",
"depends": tseries_depends,
"sources": ["pandas/_libs/tslibs/src/datetime/np_datetime.c"],
},
"_libs.tslibs.fields": {
"pyxfile": "_libs/tslibs/fields",
"depends": tseries_depends,
},
"_libs.tslibs.nattype": {"pyxfile": "_libs/tslibs/nattype"},
"_libs.tslibs.np_datetime": {
"pyxfile": "_libs/tslibs/np_datetime",
"depends": tseries_depends,
"sources": [
"pandas/_libs/tslibs/src/datetime/np_datetime.c",
"pandas/_libs/tslibs/src/datetime/np_datetime_strings.c",
],
},
"_libs.tslibs.offsets": {
"pyxfile": "_libs/tslibs/offsets",
"depends": tseries_depends,
},
"_libs.tslibs.parsing": {
"pyxfile": "_libs/tslibs/parsing",
"include": klib_include,
"depends": ["pandas/_libs/src/parser/tokenizer.h"],
"sources": ["pandas/_libs/src/parser/tokenizer.c"],
},
"_libs.tslibs.period": {
"pyxfile": "_libs/tslibs/period",
"depends": tseries_depends,
"sources": ["pandas/_libs/tslibs/src/datetime/np_datetime.c"],
},
"_libs.tslibs.strptime": {
"pyxfile": "_libs/tslibs/strptime",
"depends": tseries_depends,
},
"_libs.tslibs.timedeltas": {
"pyxfile": "_libs/tslibs/timedeltas",
"depends": tseries_depends,
},
"_libs.tslibs.timestamps": {
"pyxfile": "_libs/tslibs/timestamps",
"depends": tseries_depends,
},
"_libs.tslibs.timezones": {"pyxfile": "_libs/tslibs/timezones"},
"_libs.tslibs.tzconversion": {
"pyxfile": "_libs/tslibs/tzconversion",
"depends": tseries_depends,
},
"_libs.tslibs.vectorized": {"pyxfile": "_libs/tslibs/vectorized"},
"_libs.testing": {"pyxfile": "_libs/testing"},
"_libs.window.aggregations": {
"pyxfile": "_libs/window/aggregations",
"language": "c++",
"suffix": ".cpp",
"depends": ["pandas/_libs/src/skiplist.h"],
},
"_libs.window.indexers": {"pyxfile": "_libs/window/indexers"},
"_libs.writers": {"pyxfile": "_libs/writers"},
"io.sas._sas": {"pyxfile": "io/sas/sas"},
}
extensions = []
for name, data in ext_data.items():
source_suffix = suffix if suffix == ".pyx" else data.get("suffix", ".c")
sources = [srcpath(data["pyxfile"], suffix=source_suffix, subdir="")]
sources.extend(data.get("sources", []))
include = data.get("include")
obj = Extension(
f"pandas.{name}",
sources=sources,
depends=data.get("depends", []),
include_dirs=include,
language=data.get("language", "c"),
define_macros=data.get("macros", macros),
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
)
extensions.append(obj)
# ----------------------------------------------------------------------
# ujson
if suffix == ".pyx":
# undo dumb setuptools bug clobbering .pyx sources back to .c
for ext in extensions:
if ext.sources[0].endswith((".c", ".cpp")):
root, _ = os.path.splitext(ext.sources[0])
ext.sources[0] = root + suffix
ujson_ext = Extension(
"pandas._libs.json",
depends=[
"pandas/_libs/src/ujson/lib/ultrajson.h",
"pandas/_libs/src/ujson/python/date_conversions.h",
],
sources=(
[
"pandas/_libs/src/ujson/python/ujson.c",
"pandas/_libs/src/ujson/python/objToJSON.c",
"pandas/_libs/src/ujson/python/date_conversions.c",
"pandas/_libs/src/ujson/python/JSONtoObj.c",
"pandas/_libs/src/ujson/lib/ultrajsonenc.c",
"pandas/_libs/src/ujson/lib/ultrajsondec.c",
]
+ [
"pandas/_libs/tslibs/src/datetime/np_datetime.c",
"pandas/_libs/tslibs/src/datetime/np_datetime_strings.c",
]
),
include_dirs=[
"pandas/_libs/src/ujson/python",
"pandas/_libs/src/ujson/lib",
"pandas/_libs/src/datetime",
],
extra_compile_args=(["-D_GNU_SOURCE"] + extra_compile_args),
extra_link_args=extra_link_args,
define_macros=macros,
)
extensions.append(ujson_ext)
# ----------------------------------------------------------------------
def setup_package():
setuptools_kwargs = {
"install_requires": [
"python-dateutil >= 2.7.3",
"pytz >= 2017.2",
f"numpy >= {min_numpy_ver}",
],
"setup_requires": [f"numpy >= {min_numpy_ver}"],
"zip_safe": False,
}
setup(
name=DISTNAME,
maintainer=AUTHOR,
version=versioneer.get_version(),
packages=find_packages(include=["pandas", "pandas.*"]),
package_data={"": ["templates/*", "_libs/**/*.dll"]},
ext_modules=maybe_cythonize(extensions, compiler_directives=directives),
maintainer_email=EMAIL,
description=DESCRIPTION,
license=LICENSE,
cmdclass=cmdclass,
url=URL,
download_url=DOWNLOAD_URL,
project_urls=PROJECT_URLS,
long_description=LONG_DESCRIPTION,
classifiers=CLASSIFIERS,
platforms="any",
python_requires=">=3.6.1",
extras_require={
"test": [
# sync with setup.cfg minversion & install.rst
"pytest>=4.0.2",
"pytest-xdist",
"hypothesis>=3.58",
]
},
entry_points={
"pandas_plotting_backends": ["matplotlib = pandas:plotting._matplotlib"]
},
**setuptools_kwargs,
)
if __name__ == "__main__":
# Freeze to support parallel compilation when using spawn instead of fork
multiprocessing.freeze_support()
setup_package()
|