1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
from importlib import import_module
import numpy as np
import pandas as pd
from .pandas_vb_common import tm
for imp in ["pandas.util", "pandas.tools.hashing"]:
try:
hashing = import_module(imp)
break
except (ImportError, TypeError, ValueError):
pass
class Factorize:
params = [
[True, False],
[True, False],
[
"int",
"uint",
"float",
"object",
"datetime64[ns]",
"datetime64[ns, tz]",
"Int64",
"boolean",
"string[pyarrow]",
],
]
param_names = ["unique", "sort", "dtype"]
def setup(self, unique, sort, dtype):
N = 10**5
string_index = tm.makeStringIndex(N)
string_arrow = None
if dtype == "string[pyarrow]":
try:
string_arrow = pd.array(string_index, dtype="string[pyarrow]")
except ImportError:
raise NotImplementedError
data = {
"int": pd.Index(np.arange(N), dtype="int64"),
"uint": pd.Index(np.arange(N), dtype="uint64"),
"float": pd.Index(np.random.randn(N), dtype="float64"),
"object": string_index,
"datetime64[ns]": pd.date_range("2011-01-01", freq="H", periods=N),
"datetime64[ns, tz]": pd.date_range(
"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo"
),
"Int64": pd.array(np.arange(N), dtype="Int64"),
"boolean": pd.array(np.random.randint(0, 2, N), dtype="boolean"),
"string[pyarrow]": string_arrow,
}[dtype]
if not unique:
data = data.repeat(5)
self.data = data
def time_factorize(self, unique, sort, dtype):
pd.factorize(self.data, sort=sort)
class Duplicated:
params = [
[True, False],
["first", "last", False],
["int", "uint", "float", "string", "datetime64[ns]", "datetime64[ns, tz]"],
]
param_names = ["unique", "keep", "dtype"]
def setup(self, unique, keep, dtype):
N = 10**5
data = {
"int": pd.Index(np.arange(N), dtype="int64"),
"uint": pd.Index(np.arange(N), dtype="uint64"),
"float": pd.Index(np.random.randn(N), dtype="float64"),
"string": tm.makeStringIndex(N),
"datetime64[ns]": pd.date_range("2011-01-01", freq="H", periods=N),
"datetime64[ns, tz]": pd.date_range(
"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo"
),
}[dtype]
if not unique:
data = data.repeat(5)
self.idx = data
# cache is_unique
self.idx.is_unique
def time_duplicated(self, unique, keep, dtype):
self.idx.duplicated(keep=keep)
class Hashing:
def setup_cache(self):
N = 10**5
df = pd.DataFrame(
{
"strings": pd.Series(
tm.makeStringIndex(10000).take(np.random.randint(0, 10000, size=N))
),
"floats": np.random.randn(N),
"ints": np.arange(N),
"dates": pd.date_range("20110101", freq="s", periods=N),
"timedeltas": pd.timedelta_range("1 day", freq="s", periods=N),
}
)
df["categories"] = df["strings"].astype("category")
df.iloc[10:20] = np.nan
return df
def time_frame(self, df):
hashing.hash_pandas_object(df)
def time_series_int(self, df):
hashing.hash_pandas_object(df["ints"])
def time_series_string(self, df):
hashing.hash_pandas_object(df["strings"])
def time_series_float(self, df):
hashing.hash_pandas_object(df["floats"])
def time_series_categorical(self, df):
hashing.hash_pandas_object(df["categories"])
def time_series_timedeltas(self, df):
hashing.hash_pandas_object(df["timedeltas"])
def time_series_dates(self, df):
hashing.hash_pandas_object(df["dates"])
class Quantile:
params = [
[0, 0.5, 1],
["linear", "nearest", "lower", "higher", "midpoint"],
["float", "int", "uint"],
]
param_names = ["quantile", "interpolation", "dtype"]
def setup(self, quantile, interpolation, dtype):
N = 10**5
data = {
"int": np.arange(N),
"uint": np.arange(N).astype(np.uint64),
"float": np.random.randn(N),
}
self.idx = pd.Series(data[dtype].repeat(5))
def time_quantile(self, quantile, interpolation, dtype):
self.idx.quantile(quantile, interpolation=interpolation)
class SortIntegerArray:
params = [10**3, 10**5]
def setup(self, N):
data = np.arange(N, dtype=float)
data[40] = np.nan
self.array = pd.array(data, dtype="Int64")
def time_argsort(self, N):
self.array.argsort()
from .pandas_vb_common import setup # noqa: F401 isort:skip
|