File: attrs_caching.py

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (51 lines) | stat: -rw-r--r-- 1,426 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np

import pandas as pd
from pandas import DataFrame

try:
    from pandas.core.construction import extract_array
except ImportError:
    extract_array = None


class DataFrameAttributes:
    def setup(self):
        self.df = DataFrame(np.random.randn(10, 6))
        self.cur_index = self.df.index

    def time_get_index(self):
        self.foo = self.df.index

    def time_set_index(self):
        self.df.index = self.cur_index


class SeriesArrayAttribute:

    params = [["numeric", "object", "category", "datetime64", "datetime64tz"]]
    param_names = ["dtype"]

    def setup(self, dtype):
        if dtype == "numeric":
            self.series = pd.Series([1, 2, 3])
        elif dtype == "object":
            self.series = pd.Series(["a", "b", "c"], dtype=object)
        elif dtype == "category":
            self.series = pd.Series(["a", "b", "c"], dtype="category")
        elif dtype == "datetime64":
            self.series = pd.Series(pd.date_range("2013", periods=3))
        elif dtype == "datetime64tz":
            self.series = pd.Series(pd.date_range("2013", periods=3, tz="UTC"))

    def time_array(self, dtype):
        self.series.array

    def time_extract_array(self, dtype):
        extract_array(self.series)

    def time_extract_array_numpy(self, dtype):
        extract_array(self.series, extract_numpy=True)


from .pandas_vb_common import setup  # noqa: F401 isort:skip