File: parsers.py

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (42 lines) | stat: -rw-r--r-- 1,038 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np

try:
    from pandas._libs.tslibs.parsing import (
        _does_string_look_like_datetime,
        concat_date_cols,
    )
except ImportError:
    # Avoid whole benchmark suite import failure on asv (currently 0.4)
    pass


class DoesStringLookLikeDatetime:

    params = (["2Q2005", "0.0", "10000"],)
    param_names = ["value"]

    def setup(self, value):
        self.objects = [value] * 1000000

    def time_check_datetimes(self, value):
        for obj in self.objects:
            _does_string_look_like_datetime(obj)


class ConcatDateCols:

    params = ([1234567890, "AAAA"], [1, 2])
    param_names = ["value", "dim"]

    def setup(self, value, dim):
        count_elem = 10000
        if dim == 1:
            self.object = (np.array([value] * count_elem),)
        if dim == 2:
            self.object = (
                np.array([value] * count_elem),
                np.array([value] * count_elem),
            )

    def time_check_concat(self, value, dim):
        concat_date_cols(self.object)