1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
import sqlite3
import numpy as np
from sqlalchemy import create_engine
from pandas import (
DataFrame,
date_range,
read_sql_query,
read_sql_table,
)
from ..pandas_vb_common import tm
class SQL:
params = ["sqlalchemy", "sqlite"]
param_names = ["connection"]
def setup(self, connection):
N = 10000
con = {
"sqlalchemy": create_engine("sqlite:///:memory:"),
"sqlite": sqlite3.connect(":memory:"),
}
self.table_name = "test_type"
self.query_all = f"SELECT * FROM {self.table_name}"
self.con = con[connection]
self.df = DataFrame(
{
"float": np.random.randn(N),
"float_with_nan": np.random.randn(N),
"string": ["foo"] * N,
"bool": [True] * N,
"int": np.random.randint(0, N, size=N),
"datetime": date_range("2000-01-01", periods=N, freq="s"),
},
index=tm.makeStringIndex(N),
)
self.df.loc[1000:3000, "float_with_nan"] = np.nan
self.df["date"] = self.df["datetime"].dt.date
self.df["time"] = self.df["datetime"].dt.time
self.df["datetime_string"] = self.df["datetime"].astype(str)
self.df.to_sql(self.table_name, self.con, if_exists="replace")
def time_to_sql_dataframe(self, connection):
self.df.to_sql("test1", self.con, if_exists="replace")
def time_read_sql_query(self, connection):
read_sql_query(self.query_all, self.con)
class WriteSQLDtypes:
params = (
["sqlalchemy", "sqlite"],
[
"float",
"float_with_nan",
"string",
"bool",
"int",
"date",
"time",
"datetime",
],
)
param_names = ["connection", "dtype"]
def setup(self, connection, dtype):
N = 10000
con = {
"sqlalchemy": create_engine("sqlite:///:memory:"),
"sqlite": sqlite3.connect(":memory:"),
}
self.table_name = "test_type"
self.query_col = f"SELECT {dtype} FROM {self.table_name}"
self.con = con[connection]
self.df = DataFrame(
{
"float": np.random.randn(N),
"float_with_nan": np.random.randn(N),
"string": ["foo"] * N,
"bool": [True] * N,
"int": np.random.randint(0, N, size=N),
"datetime": date_range("2000-01-01", periods=N, freq="s"),
},
index=tm.makeStringIndex(N),
)
self.df.loc[1000:3000, "float_with_nan"] = np.nan
self.df["date"] = self.df["datetime"].dt.date
self.df["time"] = self.df["datetime"].dt.time
self.df["datetime_string"] = self.df["datetime"].astype(str)
self.df.to_sql(self.table_name, self.con, if_exists="replace")
def time_to_sql_dataframe_column(self, connection, dtype):
self.df[[dtype]].to_sql("test1", self.con, if_exists="replace")
def time_read_sql_query_select_column(self, connection, dtype):
read_sql_query(self.query_col, self.con)
class ReadSQLTable:
def setup(self):
N = 10000
self.table_name = "test"
self.con = create_engine("sqlite:///:memory:")
self.df = DataFrame(
{
"float": np.random.randn(N),
"float_with_nan": np.random.randn(N),
"string": ["foo"] * N,
"bool": [True] * N,
"int": np.random.randint(0, N, size=N),
"datetime": date_range("2000-01-01", periods=N, freq="s"),
},
index=tm.makeStringIndex(N),
)
self.df.loc[1000:3000, "float_with_nan"] = np.nan
self.df["date"] = self.df["datetime"].dt.date
self.df["time"] = self.df["datetime"].dt.time
self.df["datetime_string"] = self.df["datetime"].astype(str)
self.df.to_sql(self.table_name, self.con, if_exists="replace")
def time_read_sql_table_all(self):
read_sql_table(self.table_name, self.con)
def time_read_sql_table_parse_dates(self):
read_sql_table(
self.table_name,
self.con,
columns=["datetime_string"],
parse_dates=["datetime_string"],
)
class ReadSQLTableDtypes:
params = [
"float",
"float_with_nan",
"string",
"bool",
"int",
"date",
"time",
"datetime",
]
param_names = ["dtype"]
def setup(self, dtype):
N = 10000
self.table_name = "test"
self.con = create_engine("sqlite:///:memory:")
self.df = DataFrame(
{
"float": np.random.randn(N),
"float_with_nan": np.random.randn(N),
"string": ["foo"] * N,
"bool": [True] * N,
"int": np.random.randint(0, N, size=N),
"datetime": date_range("2000-01-01", periods=N, freq="s"),
},
index=tm.makeStringIndex(N),
)
self.df.loc[1000:3000, "float_with_nan"] = np.nan
self.df["date"] = self.df["datetime"].dt.date
self.df["time"] = self.df["datetime"].dt.time
self.df["datetime_string"] = self.df["datetime"].astype(str)
self.df.to_sql(self.table_name, self.con, if_exists="replace")
def time_read_sql_table_column(self, dtype):
read_sql_table(self.table_name, self.con, columns=[dtype])
from ..pandas_vb_common import setup # noqa: F401 isort:skip
|