1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
import numpy as np
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
date_range,
period_range,
)
from .pandas_vb_common import tm
class Reindex:
def setup(self):
rng = date_range(start="1/1/1970", periods=10000, freq="1min")
self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10))
self.df["foo"] = "bar"
self.rng_subset = Index(rng[::2])
self.df2 = DataFrame(
index=range(10000), data=np.random.rand(10000, 30), columns=range(30)
)
N = 5000
K = 200
level1 = tm.makeStringIndex(N).values.repeat(K)
level2 = np.tile(tm.makeStringIndex(K).values, N)
index = MultiIndex.from_arrays([level1, level2])
self.s = Series(np.random.randn(N * K), index=index)
self.s_subset = self.s[::2]
self.s_subset_no_cache = self.s[::2].copy()
mi = MultiIndex.from_product([rng, range(100)])
self.s2 = Series(np.random.randn(len(mi)), index=mi)
self.s2_subset = self.s2[::2].copy()
def time_reindex_dates(self):
self.df.reindex(self.rng_subset)
def time_reindex_columns(self):
self.df2.reindex(columns=self.df.columns[1:5])
def time_reindex_multiindex_with_cache(self):
# MultiIndex._values gets cached
self.s.reindex(self.s_subset.index)
def time_reindex_multiindex_no_cache(self):
# Copy to avoid MultiIndex._values getting cached
self.s.reindex(self.s_subset_no_cache.index.copy())
def time_reindex_multiindex_no_cache_dates(self):
# Copy to avoid MultiIndex._values getting cached
self.s2_subset.reindex(self.s2.index.copy())
class ReindexMethod:
params = [["pad", "backfill"], [date_range, period_range]]
param_names = ["method", "constructor"]
def setup(self, method, constructor):
N = 100000
self.idx = constructor("1/1/2000", periods=N, freq="1min")
self.ts = Series(np.random.randn(N), index=self.idx)[::2]
def time_reindex_method(self, method, constructor):
self.ts.reindex(self.idx, method=method)
class Fillna:
params = ["pad", "backfill"]
param_names = ["method"]
def setup(self, method):
N = 100000
self.idx = date_range("1/1/2000", periods=N, freq="1min")
ts = Series(np.random.randn(N), index=self.idx)[::2]
self.ts_reindexed = ts.reindex(self.idx)
self.ts_float32 = self.ts_reindexed.astype("float32")
def time_reindexed(self, method):
self.ts_reindexed.fillna(method=method)
def time_float_32(self, method):
self.ts_float32.fillna(method=method)
class LevelAlign:
def setup(self):
self.index = MultiIndex(
levels=[np.arange(10), np.arange(100), np.arange(100)],
codes=[
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
],
)
self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index)
self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1])
def time_align_level(self):
self.df.align(self.df_level, level=1, copy=False)
def time_reindex_level(self):
self.df_level.reindex(self.index, level=1)
class DropDuplicates:
params = [True, False]
param_names = ["inplace"]
def setup(self, inplace):
N = 10000
K = 10
key1 = tm.makeStringIndex(N).values.repeat(K)
key2 = tm.makeStringIndex(N).values.repeat(K)
self.df = DataFrame(
{"key1": key1, "key2": key2, "value": np.random.randn(N * K)}
)
self.df_nan = self.df.copy()
self.df_nan.iloc[:10000, :] = np.nan
self.s = Series(np.random.randint(0, 1000, size=10000))
self.s_str = Series(np.tile(tm.makeStringIndex(1000).values, 10))
N = 1000000
K = 10000
key1 = np.random.randint(0, K, size=N)
self.df_int = DataFrame({"key1": key1})
self.df_bool = DataFrame(np.random.randint(0, 2, size=(K, 10), dtype=bool))
def time_frame_drop_dups(self, inplace):
self.df.drop_duplicates(["key1", "key2"], inplace=inplace)
def time_frame_drop_dups_na(self, inplace):
self.df_nan.drop_duplicates(["key1", "key2"], inplace=inplace)
def time_series_drop_dups_int(self, inplace):
self.s.drop_duplicates(inplace=inplace)
def time_series_drop_dups_string(self, inplace):
self.s_str.drop_duplicates(inplace=inplace)
def time_frame_drop_dups_int(self, inplace):
self.df_int.drop_duplicates(inplace=inplace)
def time_frame_drop_dups_bool(self, inplace):
self.df_bool.drop_duplicates(inplace=inplace)
class Align:
# blog "pandas escaped the zoo"
def setup(self):
n = 50000
indices = tm.makeStringIndex(n)
subsample_size = 40000
self.x = Series(np.random.randn(n), indices)
self.y = Series(
np.random.randn(subsample_size),
index=np.random.choice(indices, subsample_size, replace=False),
)
def time_align_series_irregular_string(self):
self.x + self.y
from .pandas_vb_common import setup # noqa: F401 isort:skip
|