1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import numpy as np
import pandas as pd
ops = ["mean", "sum", "median", "std", "skew", "kurt", "mad", "prod", "sem", "var"]
class FrameOps:
params = [ops, ["float", "int", "Int64"], [0, 1]]
param_names = ["op", "dtype", "axis"]
def setup(self, op, dtype, axis):
if op == "mad" and dtype == "Int64":
# GH-33036, GH#33600
raise NotImplementedError
values = np.random.randn(100000, 4)
if dtype == "Int64":
values = values.astype(int)
df = pd.DataFrame(values).astype(dtype)
self.df_func = getattr(df, op)
def time_op(self, op, dtype, axis):
self.df_func(axis=axis)
class FrameMultiIndexOps:
params = ([0, 1, [0, 1]], ops)
param_names = ["level", "op"]
def setup(self, level, op):
levels = [np.arange(10), np.arange(100), np.arange(100)]
codes = [
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
]
index = pd.MultiIndex(levels=levels, codes=codes)
df = pd.DataFrame(np.random.randn(len(index), 4), index=index)
self.df_func = getattr(df, op)
def time_op(self, level, op):
self.df_func(level=level)
class SeriesOps:
params = [ops, ["float", "int"]]
param_names = ["op", "dtype"]
def setup(self, op, dtype):
s = pd.Series(np.random.randn(100000)).astype(dtype)
self.s_func = getattr(s, op)
def time_op(self, op, dtype):
self.s_func()
class SeriesMultiIndexOps:
params = ([0, 1, [0, 1]], ops)
param_names = ["level", "op"]
def setup(self, level, op):
levels = [np.arange(10), np.arange(100), np.arange(100)]
codes = [
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
]
index = pd.MultiIndex(levels=levels, codes=codes)
s = pd.Series(np.random.randn(len(index)), index=index)
self.s_func = getattr(s, op)
def time_op(self, level, op):
self.s_func(level=level)
class Rank:
params = [["DataFrame", "Series"], [True, False]]
param_names = ["constructor", "pct"]
def setup(self, constructor, pct):
values = np.random.randn(10**5)
self.data = getattr(pd, constructor)(values)
def time_rank(self, constructor, pct):
self.data.rank(pct=pct)
def time_average_old(self, constructor, pct):
self.data.rank(pct=pct) / len(self.data)
class Correlation:
params = [["spearman", "kendall", "pearson"]]
param_names = ["method"]
def setup(self, method):
self.df = pd.DataFrame(np.random.randn(500, 15))
self.df2 = pd.DataFrame(np.random.randn(500, 15))
self.df_wide = pd.DataFrame(np.random.randn(500, 100))
self.df_wide_nans = self.df_wide.where(np.random.random((500, 100)) < 0.9)
self.s = pd.Series(np.random.randn(500))
self.s2 = pd.Series(np.random.randn(500))
def time_corr(self, method):
self.df.corr(method=method)
def time_corr_wide(self, method):
self.df_wide.corr(method=method)
def time_corr_wide_nans(self, method):
self.df_wide_nans.corr(method=method)
def peakmem_corr_wide(self, method):
self.df_wide.corr(method=method)
def time_corr_series(self, method):
self.s.corr(self.s2, method=method)
def time_corrwith_cols(self, method):
self.df.corrwith(self.df2, method=method)
def time_corrwith_rows(self, method):
self.df.corrwith(self.df2, axis=1, method=method)
class Covariance:
params = []
param_names = []
def setup(self):
self.s = pd.Series(np.random.randn(100000))
self.s2 = pd.Series(np.random.randn(100000))
def time_cov_series(self):
self.s.cov(self.s2)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|