File: index.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (647 lines) | stat: -rw-r--r-- 19,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
{{ header }}

.. _getting_started:

===============
Getting started
===============

Installation
------------

.. panels::
    :card: + install-card
    :column: col-lg-6 col-md-6 col-sm-12 col-xs-12 p-3

    Working with conda?
    ^^^^^^^^^^^^^^^^^^^

    pandas is part of the `Anaconda <https://docs.continuum.io/anaconda/>`__
    distribution and can be installed with Anaconda or Miniconda:

    ++++++++++++++++++++++

    .. code-block:: bash

        conda install pandas

    ---

    Prefer pip?
    ^^^^^^^^^^^

    pandas can be installed via pip from `PyPI <https://pypi.org/project/pandas>`__.

    ++++

    .. code-block:: bash

        pip install pandas

    ---
    :column: col-12 p-3

    In-depth instructions?
    ^^^^^^^^^^^^^^^^^^^^^^

    Installing a specific version? Installing from source? Check the advanced
    installation page.

    .. link-button:: ./install.html
        :type: url
        :text: Learn more
        :classes: btn-secondary stretched-link


.. _gentle_intro:

Intro to pandas
---------------

.. raw:: html

    <div class="container">
    <div id="accordion" class="shadow tutorial-accordion">

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseOne">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        What kind of data does pandas handle?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_01_tableoriented>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseOne" class="collapse" data-parent="#accordion">
                <div class="card-body">

When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. pandas will help you
to explore, clean, and process your data. In pandas, a data table is called a :class:`DataFrame`.

.. image:: ../_static/schemas/01_table_dataframe.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_01_tableoriented>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <dsintro>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseTwo">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How do I read and write tabular data?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_02_read_write>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseTwo" class="collapse" data-parent="#accordion">
                <div class="card-body">

pandas supports the integration with many file formats or data sources out of the box (csv, excel, sql, json, parquet,…). Importing data from each of these
data sources is provided by function with the prefix ``read_*``. Similarly, the ``to_*`` methods are used to store data.

.. image:: ../_static/schemas/02_io_readwrite.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_02_read_write>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <io>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseThree">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How do I select a subset of a table?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_03_subset>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseThree" class="collapse" data-parent="#accordion">
                <div class="card-body">

Selecting or filtering specific rows and/or columns? Filtering the data on a condition? Methods for slicing, selecting, and extracting the
data you need are available in pandas.

.. image:: ../_static/schemas/03_subset_columns_rows.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_03_subset>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <indexing>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseFour">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to create plots in pandas?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_04_plotting>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseFour" class="collapse" data-parent="#accordion">
                <div class="card-body">

pandas provides plotting your data out of the box, using the power of Matplotlib. You can pick the plot type (scatter, bar, boxplot,...)
corresponding to your data.

.. image:: ../_static/schemas/04_plot_overview.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_04_plotting>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <visualization>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseFive">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to create new columns derived from existing columns?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_05_columns>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseFive" class="collapse" data-parent="#accordion">
                <div class="card-body">

There is no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise.
Adding a column to a :class:`DataFrame` based on existing data in other columns is straightforward.

.. image:: ../_static/schemas/05_newcolumn_2.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_05_columns>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <basics.dataframe.sel_add_del>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseSix">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to calculate summary statistics?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_06_stats>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseSix" class="collapse" data-parent="#accordion">
                <div class="card-body">

Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire
data set, a sliding window of the data, or grouped by categories. The latter is also known as the split-apply-combine approach.

.. image:: ../_static/schemas/06_groupby.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_06_stats>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <groupby>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseSeven">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to reshape the layout of tables?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_07_reshape>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseSeven" class="collapse" data-parent="#accordion">
                <div class="card-body">

Change the structure of your data table in multiple ways. You can :func:`~pandas.melt` your data table from wide to long/tidy form or :func:`~pandas.pivot`
from long to wide format. With aggregations built-in, a pivot table is created with a single command.

.. image:: ../_static/schemas/07_melt.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_07_reshape>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <reshaping>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseEight">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to combine data from multiple tables?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_08_combine>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseEight" class="collapse" data-parent="#accordion">
                <div class="card-body">

Multiple tables can be concatenated both column wise and row wise as database-like join/merge operations are provided to combine multiple tables of data.

.. image:: ../_static/schemas/08_concat_row.svg
   :align: center

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_08_combine>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <merging>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseNine">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to handle time series data?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_09_timeseries>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseNine" class="collapse" data-parent="#accordion">
                <div class="card-body">

pandas has great support for time series and has an extensive set of tools for working with dates, times, and time-indexed data.

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_09_timeseries>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <timeseries>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

        <div class="card tutorial-card">
            <div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseTen">
                <div class="d-flex flex-row tutorial-card-header-1">
                    <div class="d-flex flex-row tutorial-card-header-2">
                        <button class="btn btn-dark btn-sm"></button>
                        How to manipulate textual data?
                    </div>
                    <span class="badge gs-badge-link">

:ref:`Straight to tutorial...<10min_tut_10_text>`

.. raw:: html

                    </span>
                </div>
            </div>
            <div id="collapseTen" class="collapse" data-parent="#accordion">
                <div class="card-body">

Data sets do not only contain numerical data. pandas provides a wide range of functions to clean textual data and extract useful information from it.

.. raw:: html

                    <div class="d-flex flex-row">
                        <span class="badge gs-badge-link">

:ref:`To introduction tutorial <10min_tut_10_text>`

.. raw:: html

                        </span>
                        <span class="badge gs-badge-link">

:ref:`To user guide <text>`

.. raw:: html

                        </span>
                    </div>
                </div>
            </div>
        </div>

    </div>
    </div>


.. _comingfrom:

Coming from...
--------------

Are you familiar with other software for manipulating tablular data? Learn
the pandas-equivalent operations compared to software you already know:

.. panels::
    :card: + comparison-card text-center shadow
    :column: col-lg-6 col-md-6 col-sm-6 col-xs-12 d-flex

    ---
    :card: + comparison-card-r
    :img-top: ../_static/logo_r.svg

    The `R programming language <https://www.r-project.org/>`__ provides the
    ``data.frame`` data structure and multiple packages, such as
    `tidyverse <https://www.tidyverse.org>`__ use and extend ``data.frame``
    for convenient data handling functionalities similar to pandas.

    +++

    .. link-button:: compare_with_r
        :type: ref
        :text: Learn more
        :classes: btn-secondary stretched-link


    ---
    :card: + comparison-card-sql
    :img-top: ../_static/logo_sql.svg

    Already familiar to ``SELECT``, ``GROUP BY``, ``JOIN``, etc.?
    Most of these SQL manipulations do have equivalents in pandas.

    +++

    .. link-button:: compare_with_sql
        :type: ref
        :text: Learn more
        :classes: btn-secondary stretched-link


    ---
    :card: + comparison-card-stata
    :img-top: ../_static/logo_stata.svg

    The ``data set`` included in the `STATA <https://en.wikipedia.org/wiki/Stata>`__
    statistical software suite corresponds to the pandas ``DataFrame``.
    Many of the operations known from STATA have an equivalent in pandas.

    +++

    .. link-button:: compare_with_stata
        :type: ref
        :text: Learn more
        :classes: btn-secondary stretched-link


    ---
    :card: + comparison-card-excel
    :img-top: ../_static/spreadsheets/logo_excel.svg

    Users of `Excel <https://en.wikipedia.org/wiki/Microsoft_Excel>`__
    or other spreadsheet programs will find that many of the concepts are
    transferrable to pandas.

    +++

    .. link-button:: compare_with_spreadsheets
        :type: ref
        :text: Learn more
        :classes: btn-secondary stretched-link


    ---
    :card: + comparison-card-sas
    :img-top: ../_static/logo_sas.svg

    The `SAS <https://en.wikipedia.org/wiki/SAS_(software)>`__ statistical software suite
    also provides the ``data set`` corresponding to the pandas ``DataFrame``.
    Also SAS vectorized operations, filtering, string processing operations,
    and more have similar functions in pandas.

    +++

    .. link-button:: compare_with_sas
        :type: ref
        :text: Learn more
        :classes: btn-secondary stretched-link


Tutorials
---------

For a quick overview of pandas functionality, see :ref:`10 Minutes to pandas<10min>`.

You can also reference the pandas `cheat sheet <https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf>`_
for a succinct guide for manipulating data with pandas.

The community produces a wide variety of tutorials available online. Some of the
material is enlisted in the community contributed :ref:`communitytutorials`.


.. If you update this toctree, also update the manual toctree in the
   main index.rst.template

.. toctree::
    :maxdepth: 2
    :hidden:

    install
    overview
    intro_tutorials/index
    comparison/index
    tutorials