1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
{{ header }}
.. _getting_started:
===============
Getting started
===============
Installation
------------
.. panels::
:card: + install-card
:column: col-lg-6 col-md-6 col-sm-12 col-xs-12 p-3
Working with conda?
^^^^^^^^^^^^^^^^^^^
pandas is part of the `Anaconda <https://docs.continuum.io/anaconda/>`__
distribution and can be installed with Anaconda or Miniconda:
++++++++++++++++++++++
.. code-block:: bash
conda install pandas
---
Prefer pip?
^^^^^^^^^^^
pandas can be installed via pip from `PyPI <https://pypi.org/project/pandas>`__.
++++
.. code-block:: bash
pip install pandas
---
:column: col-12 p-3
In-depth instructions?
^^^^^^^^^^^^^^^^^^^^^^
Installing a specific version? Installing from source? Check the advanced
installation page.
.. link-button:: ./install.html
:type: url
:text: Learn more
:classes: btn-secondary stretched-link
.. _gentle_intro:
Intro to pandas
---------------
.. raw:: html
<div class="container">
<div id="accordion" class="shadow tutorial-accordion">
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseOne">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
What kind of data does pandas handle?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_01_tableoriented>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseOne" class="collapse" data-parent="#accordion">
<div class="card-body">
When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. pandas will help you
to explore, clean, and process your data. In pandas, a data table is called a :class:`DataFrame`.
.. image:: ../_static/schemas/01_table_dataframe.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_01_tableoriented>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <dsintro>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseTwo">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How do I read and write tabular data?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_02_read_write>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseTwo" class="collapse" data-parent="#accordion">
<div class="card-body">
pandas supports the integration with many file formats or data sources out of the box (csv, excel, sql, json, parquet,…). Importing data from each of these
data sources is provided by function with the prefix ``read_*``. Similarly, the ``to_*`` methods are used to store data.
.. image:: ../_static/schemas/02_io_readwrite.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_02_read_write>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <io>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseThree">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How do I select a subset of a table?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_03_subset>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseThree" class="collapse" data-parent="#accordion">
<div class="card-body">
Selecting or filtering specific rows and/or columns? Filtering the data on a condition? Methods for slicing, selecting, and extracting the
data you need are available in pandas.
.. image:: ../_static/schemas/03_subset_columns_rows.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_03_subset>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <indexing>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseFour">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to create plots in pandas?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_04_plotting>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseFour" class="collapse" data-parent="#accordion">
<div class="card-body">
pandas provides plotting your data out of the box, using the power of Matplotlib. You can pick the plot type (scatter, bar, boxplot,...)
corresponding to your data.
.. image:: ../_static/schemas/04_plot_overview.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_04_plotting>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <visualization>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseFive">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to create new columns derived from existing columns?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_05_columns>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseFive" class="collapse" data-parent="#accordion">
<div class="card-body">
There is no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise.
Adding a column to a :class:`DataFrame` based on existing data in other columns is straightforward.
.. image:: ../_static/schemas/05_newcolumn_2.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_05_columns>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <basics.dataframe.sel_add_del>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseSix">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to calculate summary statistics?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_06_stats>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseSix" class="collapse" data-parent="#accordion">
<div class="card-body">
Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire
data set, a sliding window of the data, or grouped by categories. The latter is also known as the split-apply-combine approach.
.. image:: ../_static/schemas/06_groupby.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_06_stats>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <groupby>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseSeven">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to reshape the layout of tables?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_07_reshape>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseSeven" class="collapse" data-parent="#accordion">
<div class="card-body">
Change the structure of your data table in multiple ways. You can :func:`~pandas.melt` your data table from wide to long/tidy form or :func:`~pandas.pivot`
from long to wide format. With aggregations built-in, a pivot table is created with a single command.
.. image:: ../_static/schemas/07_melt.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_07_reshape>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <reshaping>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseEight">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to combine data from multiple tables?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_08_combine>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseEight" class="collapse" data-parent="#accordion">
<div class="card-body">
Multiple tables can be concatenated both column wise and row wise as database-like join/merge operations are provided to combine multiple tables of data.
.. image:: ../_static/schemas/08_concat_row.svg
:align: center
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_08_combine>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <merging>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseNine">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to handle time series data?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_09_timeseries>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseNine" class="collapse" data-parent="#accordion">
<div class="card-body">
pandas has great support for time series and has an extensive set of tools for working with dates, times, and time-indexed data.
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_09_timeseries>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <timeseries>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
<div class="card tutorial-card">
<div class="card-header collapsed card-link" data-toggle="collapse" data-target="#collapseTen">
<div class="d-flex flex-row tutorial-card-header-1">
<div class="d-flex flex-row tutorial-card-header-2">
<button class="btn btn-dark btn-sm"></button>
How to manipulate textual data?
</div>
<span class="badge gs-badge-link">
:ref:`Straight to tutorial...<10min_tut_10_text>`
.. raw:: html
</span>
</div>
</div>
<div id="collapseTen" class="collapse" data-parent="#accordion">
<div class="card-body">
Data sets do not only contain numerical data. pandas provides a wide range of functions to clean textual data and extract useful information from it.
.. raw:: html
<div class="d-flex flex-row">
<span class="badge gs-badge-link">
:ref:`To introduction tutorial <10min_tut_10_text>`
.. raw:: html
</span>
<span class="badge gs-badge-link">
:ref:`To user guide <text>`
.. raw:: html
</span>
</div>
</div>
</div>
</div>
</div>
</div>
.. _comingfrom:
Coming from...
--------------
Are you familiar with other software for manipulating tablular data? Learn
the pandas-equivalent operations compared to software you already know:
.. panels::
:card: + comparison-card text-center shadow
:column: col-lg-6 col-md-6 col-sm-6 col-xs-12 d-flex
---
:card: + comparison-card-r
:img-top: ../_static/logo_r.svg
The `R programming language <https://www.r-project.org/>`__ provides the
``data.frame`` data structure and multiple packages, such as
`tidyverse <https://www.tidyverse.org>`__ use and extend ``data.frame``
for convenient data handling functionalities similar to pandas.
+++
.. link-button:: compare_with_r
:type: ref
:text: Learn more
:classes: btn-secondary stretched-link
---
:card: + comparison-card-sql
:img-top: ../_static/logo_sql.svg
Already familiar to ``SELECT``, ``GROUP BY``, ``JOIN``, etc.?
Most of these SQL manipulations do have equivalents in pandas.
+++
.. link-button:: compare_with_sql
:type: ref
:text: Learn more
:classes: btn-secondary stretched-link
---
:card: + comparison-card-stata
:img-top: ../_static/logo_stata.svg
The ``data set`` included in the `STATA <https://en.wikipedia.org/wiki/Stata>`__
statistical software suite corresponds to the pandas ``DataFrame``.
Many of the operations known from STATA have an equivalent in pandas.
+++
.. link-button:: compare_with_stata
:type: ref
:text: Learn more
:classes: btn-secondary stretched-link
---
:card: + comparison-card-excel
:img-top: ../_static/spreadsheets/logo_excel.svg
Users of `Excel <https://en.wikipedia.org/wiki/Microsoft_Excel>`__
or other spreadsheet programs will find that many of the concepts are
transferrable to pandas.
+++
.. link-button:: compare_with_spreadsheets
:type: ref
:text: Learn more
:classes: btn-secondary stretched-link
---
:card: + comparison-card-sas
:img-top: ../_static/logo_sas.svg
The `SAS <https://en.wikipedia.org/wiki/SAS_(software)>`__ statistical software suite
also provides the ``data set`` corresponding to the pandas ``DataFrame``.
Also SAS vectorized operations, filtering, string processing operations,
and more have similar functions in pandas.
+++
.. link-button:: compare_with_sas
:type: ref
:text: Learn more
:classes: btn-secondary stretched-link
Tutorials
---------
For a quick overview of pandas functionality, see :ref:`10 Minutes to pandas<10min>`.
You can also reference the pandas `cheat sheet <https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf>`_
for a succinct guide for manipulating data with pandas.
The community produces a wide variety of tutorials available online. Some of the
material is enlisted in the community contributed :ref:`communitytutorials`.
.. If you update this toctree, also update the manual toctree in the
main index.rst.template
.. toctree::
:maxdepth: 2
:hidden:
install
overview
intro_tutorials/index
comparison/index
tutorials
|