File: 03_subset_data.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (379 lines) | stat: -rw-r--r-- 10,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
.. _10min_tut_03_subset:

{{ header }}

.. ipython:: python

    import pandas as pd

.. raw:: html

    <div class="card gs-data">
        <div class="card-header">
            <div class="gs-data-title">
                Data used for this tutorial:
            </div>
        </div>
        <ul class="list-group list-group-flush">
            <li class="list-group-item">

.. include:: includes/titanic.rst

.. ipython:: python

    titanic = pd.read_csv("data/titanic.csv")
    titanic.head()

.. raw:: html

            </li>
        </ul>
    </div>

How do I select a subset of a ``DataFrame``?
============================================

How do I select specific columns from a ``DataFrame``?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. image:: ../../_static/schemas/03_subset_columns.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

I’m interested in the age of the Titanic passengers.

.. ipython:: python

    ages = titanic["Age"]
    ages.head()

To select a single column, use square brackets ``[]`` with the column
name of the column of interest.

.. raw:: html

        </li>
    </ul>

Each column in a :class:`DataFrame` is a :class:`Series`. As a single column is
selected, the returned object is a pandas :class:`Series`. We can verify this
by checking the type of the output:

.. ipython:: python

    type(titanic["Age"])

And have a look at the ``shape`` of the output:

.. ipython:: python

    titanic["Age"].shape

:attr:`DataFrame.shape` is an attribute (remember :ref:`tutorial on reading and writing <10min_tut_02_read_write>`, do not use parentheses for attributes) of a
pandas ``Series`` and ``DataFrame`` containing the number of rows and
columns: *(nrows, ncolumns)*. A pandas Series is 1-dimensional and only
the number of rows is returned.

.. raw:: html

    <ul class="task-bullet">
        <li>

I’m interested in the age and sex of the Titanic passengers.

.. ipython:: python

    age_sex = titanic[["Age", "Sex"]]
    age_sex.head()

To select multiple columns, use a list of column names within the
selection brackets ``[]``.

.. raw:: html

        </li>
    </ul>

.. note::
    The inner square brackets define a
    :ref:`Python list <python:tut-morelists>` with column names, whereas
    the outer brackets are used to select the data from a pandas
    ``DataFrame`` as seen in the previous example.

The returned data type is a pandas DataFrame:

.. ipython:: python

    type(titanic[["Age", "Sex"]])

.. ipython:: python

    titanic[["Age", "Sex"]].shape

The selection returned a ``DataFrame`` with 891 rows and 2 columns. Remember, a
``DataFrame`` is 2-dimensional with both a row and column dimension.

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

For basic information on indexing, see the user guide section on :ref:`indexing and selecting data <indexing.basics>`.

.. raw:: html

    </div>

How do I filter specific rows from a ``DataFrame``?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. image:: ../../_static/schemas/03_subset_rows.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

I’m interested in the passengers older than 35 years.

.. ipython:: python

    above_35 = titanic[titanic["Age"] > 35]
    above_35.head()

To select rows based on a conditional expression, use a condition inside
the selection brackets ``[]``.

.. raw:: html

        </li>
    </ul>

The condition inside the selection
brackets ``titanic["Age"] > 35`` checks for which rows the ``Age``
column has a value larger than 35:

.. ipython:: python

    titanic["Age"] > 35

The output of the conditional expression (``>``, but also ``==``,
``!=``, ``<``, ``<=``,… would work) is actually a pandas ``Series`` of
boolean values (either ``True`` or ``False``) with the same number of
rows as the original ``DataFrame``. Such a ``Series`` of boolean values
can be used to filter the ``DataFrame`` by putting it in between the
selection brackets ``[]``. Only rows for which the value is ``True``
will be selected.

We know from before that the original Titanic ``DataFrame`` consists of
891 rows. Let’s have a look at the number of rows which satisfy the
condition by checking the ``shape`` attribute of the resulting
``DataFrame`` ``above_35``:

.. ipython:: python

    above_35.shape

.. raw:: html

    <ul class="task-bullet">
        <li>

I’m interested in the Titanic passengers from cabin class 2 and 3.

.. ipython:: python

    class_23 = titanic[titanic["Pclass"].isin([2, 3])]
    class_23.head()

Similar to the conditional expression, the :func:`~Series.isin` conditional function
returns a ``True`` for each row the values are in the provided list. To
filter the rows based on such a function, use the conditional function
inside the selection brackets ``[]``. In this case, the condition inside
the selection brackets ``titanic["Pclass"].isin([2, 3])`` checks for
which rows the ``Pclass`` column is either 2 or 3.

.. raw:: html

        </li>
    </ul>

The above is equivalent to filtering by rows for which the class is
either 2 or 3 and combining the two statements with an ``|`` (or)
operator:

.. ipython:: python

    class_23 = titanic[(titanic["Pclass"] == 2) | (titanic["Pclass"] == 3)]
    class_23.head()

.. note::
    When combining multiple conditional statements, each condition
    must be surrounded by parentheses ``()``. Moreover, you can not use
    ``or``/``and`` but need to use the ``or`` operator ``|`` and the ``and``
    operator ``&``.

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

See the dedicated section in the user guide about :ref:`boolean indexing <indexing.boolean>` or about the :ref:`isin function <indexing.basics.indexing_isin>`.

.. raw:: html

    </div>

.. raw:: html

    <ul class="task-bullet">
        <li>

I want to work with passenger data for which the age is known.

.. ipython:: python

    age_no_na = titanic[titanic["Age"].notna()]
    age_no_na.head()

The :meth:`~Series.notna` conditional function returns a ``True`` for each row the
values are not a ``Null`` value. As such, this can be combined with the
selection brackets ``[]`` to filter the data table.

.. raw:: html

        </li>
    </ul>

You might wonder what actually changed, as the first 5 lines are still
the same values. One way to verify is to check if the shape has changed:

.. ipython:: python

    age_no_na.shape

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

For more dedicated functions on missing values, see the user guide section about :ref:`handling missing data <missing_data>`.

.. raw:: html

    </div>

.. _10min_tut_03_subset.rows_and_columns:

How do I select specific rows and columns from a ``DataFrame``?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. image:: ../../_static/schemas/03_subset_columns_rows.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

I’m interested in the names of the passengers older than 35 years.

.. ipython:: python

    adult_names = titanic.loc[titanic["Age"] > 35, "Name"]
    adult_names.head()

In this case, a subset of both rows and columns is made in one go and
just using selection brackets ``[]`` is not sufficient anymore. The
``loc``/``iloc`` operators are required in front of the selection
brackets ``[]``. When using ``loc``/``iloc``, the part before the comma
is the rows you want, and the part after the comma is the columns you
want to select.

.. raw:: html

        </li>
    </ul>

When using the column names, row labels or a condition expression, use
the ``loc`` operator in front of the selection brackets ``[]``. For both
the part before and after the comma, you can use a single label, a list
of labels, a slice of labels, a conditional expression or a colon. Using
a colon specifies you want to select all rows or columns.

.. raw:: html

    <ul class="task-bullet">
        <li>

I’m interested in rows 10 till 25 and columns 3 to 5.

.. ipython:: python

    titanic.iloc[9:25, 2:5]

Again, a subset of both rows and columns is made in one go and just
using selection brackets ``[]`` is not sufficient anymore. When
specifically interested in certain rows and/or columns based on their
position in the table, use the ``iloc`` operator in front of the
selection brackets ``[]``.

.. raw:: html

        </li>
    </ul>

When selecting specific rows and/or columns with ``loc`` or ``iloc``,
new values can be assigned to the selected data. For example, to assign
the name ``anonymous`` to the first 3 elements of the third column:

.. ipython:: python

    titanic.iloc[0:3, 3] = "anonymous"
    titanic.head()

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

See the user guide section on :ref:`different choices for indexing <indexing.choice>` to get more insight in the usage of ``loc`` and ``iloc``.

.. raw:: html

    </div>

.. raw:: html

    <div class="shadow gs-callout gs-callout-remember">
        <h4>REMEMBER</h4>

-  When selecting subsets of data, square brackets ``[]`` are used.
-  Inside these brackets, you can use a single column/row label, a list
   of column/row labels, a slice of labels, a conditional expression or
   a colon.
-  Select specific rows and/or columns using ``loc`` when using the row
   and column names.
-  Select specific rows and/or columns using ``iloc`` when using the
   positions in the table.
-  You can assign new values to a selection based on ``loc``/``iloc``.

.. raw:: html

    </div>

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

A full overview of indexing is provided in the user guide pages on :ref:`indexing and selecting data <indexing>`.

.. raw:: html

    </div>