1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
.. _10min_tut_05_columns:
{{ header }}
.. ipython:: python
import pandas as pd
.. raw:: html
<div class="card gs-data">
<div class="card-header">
<div class="gs-data-title">
Data used for this tutorial:
</div>
</div>
<ul class="list-group list-group-flush">
<li class="list-group-item">
.. include:: includes/air_quality_no2.rst
.. ipython:: python
air_quality = pd.read_csv("data/air_quality_no2.csv", index_col=0, parse_dates=True)
air_quality.head()
.. raw:: html
</li>
</ul>
</div>
How to create new columns derived from existing columns?
--------------------------------------------------------
.. image:: ../../_static/schemas/05_newcolumn_1.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
I want to express the :math:`NO_2` concentration of the station in London in mg/m\ :math:`^3`.
(*If we assume temperature of 25 degrees Celsius and pressure of 1013
hPa, the conversion factor is 1.882*)
.. ipython:: python
air_quality["london_mg_per_cubic"] = air_quality["station_london"] * 1.882
air_quality.head()
To create a new column, use the ``[]`` brackets with the new column name
at the left side of the assignment.
.. raw:: html
</li>
</ul>
.. note::
The calculation of the values is done **element-wise**. This
means all values in the given column are multiplied by the value 1.882
at once. You do not need to use a loop to iterate each of the rows!
.. image:: ../../_static/schemas/05_newcolumn_2.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
I want to check the ratio of the values in Paris versus Antwerp and save the result in a new column.
.. ipython:: python
air_quality["ratio_paris_antwerp"] = (
air_quality["station_paris"] / air_quality["station_antwerp"]
)
air_quality.head()
The calculation is again element-wise, so the ``/`` is applied *for the
values in each row*.
.. raw:: html
</li>
</ul>
Also other mathematical operators (``+``, ``-``, ``*``, ``/``,…) or
logical operators (``<``, ``>``, ``==``,…) work element-wise. The latter was already
used in the :ref:`subset data tutorial <10min_tut_03_subset>` to filter
rows of a table using a conditional expression.
If you need more advanced logic, you can use arbitrary Python code via :meth:`~DataFrame.apply`.
.. raw:: html
<ul class="task-bullet">
<li>
I want to rename the data columns to the corresponding station identifiers used by `OpenAQ <https://openaq.org/>`__.
.. ipython:: python
air_quality_renamed = air_quality.rename(
columns={
"station_antwerp": "BETR801",
"station_paris": "FR04014",
"station_london": "London Westminster",
}
)
.. ipython:: python
air_quality_renamed.head()
The :meth:`~DataFrame.rename` function can be used for both row labels and column
labels. Provide a dictionary with the keys the current names and the
values the new names to update the corresponding names.
.. raw:: html
</li>
</ul>
The mapping should not be restricted to fixed names only, but can be a
mapping function as well. For example, converting the column names to
lowercase letters can be done using a function as well:
.. ipython:: python
air_quality_renamed = air_quality_renamed.rename(columns=str.lower)
air_quality_renamed.head()
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
Details about column or row label renaming is provided in the user guide section on :ref:`renaming labels <basics.rename>`.
.. raw:: html
</div>
.. raw:: html
<div class="shadow gs-callout gs-callout-remember">
<h4>REMEMBER</h4>
- Create a new column by assigning the output to the DataFrame with a
new column name in between the ``[]``.
- Operations are element-wise, no need to loop over rows.
- Use ``rename`` with a dictionary or function to rename row labels or
column names.
.. raw:: html
</div>
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
The user guide contains a separate section on :ref:`column addition and deletion <basics.dataframe.sel_add_del>`.
.. raw:: html
</div>
|