File: 06_calculate_statistics.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (286 lines) | stat: -rw-r--r-- 7,342 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
.. _10min_tut_06_stats:

{{ header }}

.. ipython:: python

    import pandas as pd

.. raw:: html

    <div class="card gs-data">
        <div class="card-header">
            <div class="gs-data-title">
                Data used for this tutorial:
            </div>
        </div>
        <ul class="list-group list-group-flush">
            <li class="list-group-item">

.. include:: includes/titanic.rst

.. ipython:: python

    titanic = pd.read_csv("data/titanic.csv")
    titanic.head()

.. raw:: html

            </li>
        </ul>
    </div>

How to calculate summary statistics?
------------------------------------

Aggregating statistics
~~~~~~~~~~~~~~~~~~~~~~

.. image:: ../../_static/schemas/06_aggregate.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

What is the average age of the Titanic passengers?

.. ipython:: python

    titanic["Age"].mean()

.. raw:: html

        </li>
    </ul>

Different statistics are available and can be applied to columns with
numerical data. Operations in general exclude missing data and operate
across rows by default.

.. image:: ../../_static/schemas/06_reduction.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

What is the median age and ticket fare price of the Titanic passengers?

.. ipython:: python

    titanic[["Age", "Fare"]].median()

The statistic applied to multiple columns of a ``DataFrame`` (the selection of two columns
returns a ``DataFrame``, see the :ref:`subset data tutorial <10min_tut_03_subset>`) is calculated for each numeric column.

.. raw:: html

        </li>
    </ul>

The aggregating statistic can be calculated for multiple columns at the
same time. Remember the ``describe`` function from the :ref:`first tutorial <10min_tut_01_tableoriented>`?

.. ipython:: python

    titanic[["Age", "Fare"]].describe()

Instead of the predefined statistics, specific combinations of
aggregating statistics for given columns can be defined using the
:func:`DataFrame.agg` method:

.. ipython:: python

    titanic.agg(
        {
            "Age": ["min", "max", "median", "skew"],
            "Fare": ["min", "max", "median", "mean"],
        }
    )

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

Details about descriptive statistics are provided in the user guide section on :ref:`descriptive statistics <basics.stats>`.

.. raw:: html

   </div>


Aggregating statistics grouped by category
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. image:: ../../_static/schemas/06_groupby.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

What is the average age for male versus female Titanic passengers?

.. ipython:: python

    titanic[["Sex", "Age"]].groupby("Sex").mean()

As our interest is the average age for each gender, a subselection on
these two columns is made first: ``titanic[["Sex", "Age"]]``. Next, the
:meth:`~DataFrame.groupby` method is applied on the ``Sex`` column to make a group per
category. The average age *for each gender* is calculated and
returned.

.. raw:: html

        </li>
    </ul>

Calculating a given statistic (e.g. ``mean`` age) *for each category in
a column* (e.g. male/female in the ``Sex`` column) is a common pattern.
The ``groupby`` method is used to support this type of operations. This
fits in the more general ``split-apply-combine`` pattern:

-  **Split** the data into groups
-  **Apply** a function to each group independently
-  **Combine** the results into a data structure

The apply and combine steps are typically done together in pandas.

In the previous example, we explicitly selected the 2 columns first. If
not, the ``mean`` method is applied to each column containing numerical
columns by passing ``numeric_only=True``:

.. ipython:: python

    titanic.groupby("Sex").mean(numeric_only=True)

It does not make much sense to get the average value of the ``Pclass``.
If we are only interested in the average age for each gender, the
selection of columns (rectangular brackets ``[]`` as usual) is supported
on the grouped data as well:

.. ipython:: python

    titanic.groupby("Sex")["Age"].mean()

.. image:: ../../_static/schemas/06_groupby_select_detail.svg
   :align: center

.. note::
    The ``Pclass`` column contains numerical data but actually
    represents 3 categories (or factors) with respectively the labels ‘1’,
    ‘2’ and ‘3’. Calculating statistics on these does not make much sense.
    Therefore, pandas provides a ``Categorical`` data type to handle this
    type of data. More information is provided in the user guide
    :ref:`categorical` section.

.. raw:: html

    <ul class="task-bullet">
        <li>

What is the mean ticket fare price for each of the sex and cabin class combinations?

.. ipython:: python

    titanic.groupby(["Sex", "Pclass"])["Fare"].mean()

Grouping can be done by multiple columns at the same time. Provide the
column names as a list to the :meth:`~DataFrame.groupby` method.

.. raw:: html

        </li>
    </ul>

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

A full description on the split-apply-combine approach is provided in the user guide section on :ref:`groupby operations <groupby>`.

.. raw:: html

   </div>

Count number of records by category
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. image:: ../../_static/schemas/06_valuecounts.svg
   :align: center

.. raw:: html

    <ul class="task-bullet">
        <li>

What is the number of passengers in each of the cabin classes?

.. ipython:: python

    titanic["Pclass"].value_counts()

The :meth:`~Series.value_counts` method counts the number of records for each
category in a column.

.. raw:: html

        </li>
    </ul>

The function is a shortcut, as it is actually a groupby operation in combination with counting of the number of records
within each group:

.. ipython:: python

    titanic.groupby("Pclass")["Pclass"].count()

.. note::
    Both ``size`` and ``count`` can be used in combination with
    ``groupby``. Whereas ``size`` includes ``NaN`` values and just provides
    the number of rows (size of the table), ``count`` excludes the missing
    values. In the ``value_counts`` method, use the ``dropna`` argument to
    include or exclude the ``NaN`` values.

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

The user guide has a dedicated section on ``value_counts`` , see the page on :ref:`discretization <basics.discretization>`.

.. raw:: html

   </div>

.. raw:: html

    <div class="shadow gs-callout gs-callout-remember">
        <h4>REMEMBER</h4>

-  Aggregation statistics can be calculated on entire columns or rows.
-  ``groupby`` provides the power of the *split-apply-combine* pattern.
-  ``value_counts`` is a convenient shortcut to count the number of
   entries in each category of a variable.

.. raw:: html

   </div>

.. raw:: html

    <div class="d-flex flex-row gs-torefguide">
        <span class="badge badge-info">To user guide</span>

A full description on the split-apply-combine approach is provided in the user guide pages about :ref:`groupby operations <groupby>`.

.. raw:: html

   </div>