1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
.. _10min_tut_08_combine:
{{ header }}
.. ipython:: python
import pandas as pd
.. raw:: html
<div class="card gs-data">
<div class="card-header">
<div class="gs-data-title">
Data used for this tutorial:
</div>
</div>
<ul class="list-group list-group-flush">
<li class="list-group-item">
<div data-toggle="collapse" href="#collapsedata" role="button" aria-expanded="false" aria-controls="collapsedata">
<span class="badge badge-dark">Air quality Nitrate data</span>
</div>
<div class="collapse" id="collapsedata">
<div class="card-body">
<p class="card-text">
For this tutorial, air quality data about :math:`NO_2` is used, made available by
`OpenAQ <https://openaq.org>`__ and downloaded using the
`py-openaq <http://dhhagan.github.io/py-openaq/index.html>`__ package.
The ``air_quality_no2_long.csv`` data set provides :math:`NO_2`
values for the measurement stations *FR04014*, *BETR801* and *London
Westminster* in respectively Paris, Antwerp and London.
.. raw:: html
</p>
<a href="https://github.com/pandas-dev/pandas/tree/main/doc/data/air_quality_no2_long.csv" class="btn btn-dark btn-sm">To raw data</a>
</div>
</div>
.. ipython:: python
air_quality_no2 = pd.read_csv("data/air_quality_no2_long.csv",
parse_dates=True)
air_quality_no2 = air_quality_no2[["date.utc", "location",
"parameter", "value"]]
air_quality_no2.head()
.. raw:: html
</li>
<li class="list-group-item">
<div data-toggle="collapse" href="#collapsedata2" role="button" aria-expanded="false" aria-controls="collapsedata2">
<span class="badge badge-dark">Air quality Particulate matter data</span>
</div>
<div class="collapse" id="collapsedata2">
<div class="card-body">
<p class="card-text">
For this tutorial, air quality data about Particulate
matter less than 2.5 micrometers is used, made available by
`OpenAQ <https://openaq.org>`__ and downloaded using the
`py-openaq <http://dhhagan.github.io/py-openaq/index.html>`__ package.
The ``air_quality_pm25_long.csv`` data set provides :math:`PM_{25}`
values for the measurement stations *FR04014*, *BETR801* and *London
Westminster* in respectively Paris, Antwerp and London.
.. raw:: html
</p>
<a href="https://github.com/pandas-dev/pandas/tree/main/doc/data/air_quality_pm25_long.csv" class="btn btn-dark btn-sm">To raw data</a>
</div>
</div>
.. ipython:: python
air_quality_pm25 = pd.read_csv("data/air_quality_pm25_long.csv",
parse_dates=True)
air_quality_pm25 = air_quality_pm25[["date.utc", "location",
"parameter", "value"]]
air_quality_pm25.head()
.. raw:: html
</li>
</ul>
</div>
How to combine data from multiple tables?
-----------------------------------------
Concatenating objects
~~~~~~~~~~~~~~~~~~~~~
.. image:: ../../_static/schemas/08_concat_row.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
I want to combine the measurements of :math:`NO_2` and :math:`PM_{25}`, two tables with a similar structure, in a single table.
.. ipython:: python
air_quality = pd.concat([air_quality_pm25, air_quality_no2], axis=0)
air_quality.head()
The :func:`~pandas.concat` function performs concatenation operations of multiple
tables along one of the axes (row-wise or column-wise).
.. raw:: html
</li>
</ul>
By default concatenation is along axis 0, so the resulting table combines the rows
of the input tables. Let’s check the shape of the original and the
concatenated tables to verify the operation:
.. ipython:: python
print('Shape of the ``air_quality_pm25`` table: ', air_quality_pm25.shape)
print('Shape of the ``air_quality_no2`` table: ', air_quality_no2.shape)
print('Shape of the resulting ``air_quality`` table: ', air_quality.shape)
Hence, the resulting table has 3178 = 1110 + 2068 rows.
.. note::
The **axis** argument will return in a number of pandas
methods that can be applied **along an axis**. A ``DataFrame`` has two
corresponding axes: the first running vertically downwards across rows
(axis 0), and the second running horizontally across columns (axis 1).
Most operations like concatenation or summary statistics are by default
across rows (axis 0), but can be applied across columns as well.
Sorting the table on the datetime information illustrates also the
combination of both tables, with the ``parameter`` column defining the
origin of the table (either ``no2`` from table ``air_quality_no2`` or
``pm25`` from table ``air_quality_pm25``):
.. ipython:: python
air_quality = air_quality.sort_values("date.utc")
air_quality.head()
In this specific example, the ``parameter`` column provided by the data
ensures that each of the original tables can be identified. This is not
always the case. The ``concat`` function provides a convenient solution
with the ``keys`` argument, adding an additional (hierarchical) row
index. For example:
.. ipython:: python
air_quality_ = pd.concat([air_quality_pm25, air_quality_no2], keys=["PM25", "NO2"])
air_quality_.head()
.. note::
The existence of multiple row/column indices at the same time
has not been mentioned within these tutorials. *Hierarchical indexing*
or *MultiIndex* is an advanced and powerful pandas feature to analyze
higher dimensional data.
Multi-indexing is out of scope for this pandas introduction. For the
moment, remember that the function ``reset_index`` can be used to
convert any level of an index to a column, e.g.
``air_quality.reset_index(level=0)``
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
Feel free to dive into the world of multi-indexing at the user guide section on :ref:`advanced indexing <advanced>`.
.. raw:: html
</div>
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
More options on table concatenation (row and column
wise) and how ``concat`` can be used to define the logic (union or
intersection) of the indexes on the other axes is provided at the section on
:ref:`object concatenation <merging.concat>`.
.. raw:: html
</div>
Join tables using a common identifier
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. image:: ../../_static/schemas/08_merge_left.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
Add the station coordinates, provided by the stations metadata table, to the corresponding rows in the measurements table.
.. warning::
The air quality measurement station coordinates are stored in a data
file ``air_quality_stations.csv``, downloaded using the
`py-openaq <http://dhhagan.github.io/py-openaq/index.html>`__ package.
.. ipython:: python
stations_coord = pd.read_csv("data/air_quality_stations.csv")
stations_coord.head()
.. note::
The stations used in this example (FR04014, BETR801 and London
Westminster) are just three entries enlisted in the metadata table. We
only want to add the coordinates of these three to the measurements
table, each on the corresponding rows of the ``air_quality`` table.
.. ipython:: python
air_quality.head()
.. ipython:: python
air_quality = pd.merge(air_quality, stations_coord, how="left", on="location")
air_quality.head()
Using the :meth:`~pandas.merge` function, for each of the rows in the
``air_quality`` table, the corresponding coordinates are added from the
``air_quality_stations_coord`` table. Both tables have the column
``location`` in common which is used as a key to combine the
information. By choosing the ``left`` join, only the locations available
in the ``air_quality`` (left) table, i.e. FR04014, BETR801 and London
Westminster, end up in the resulting table. The ``merge`` function
supports multiple join options similar to database-style operations.
.. raw:: html
</li>
</ul>
.. raw:: html
<ul class="task-bullet">
<li>
Add the parameters' full description and name, provided by the parameters metadata table, to the measurements table.
.. warning::
The air quality parameters metadata are stored in a data file
``air_quality_parameters.csv``, downloaded using the
`py-openaq <http://dhhagan.github.io/py-openaq/index.html>`__ package.
.. ipython:: python
air_quality_parameters = pd.read_csv("data/air_quality_parameters.csv")
air_quality_parameters.head()
.. ipython:: python
air_quality = pd.merge(air_quality, air_quality_parameters,
how='left', left_on='parameter', right_on='id')
air_quality.head()
Compared to the previous example, there is no common column name.
However, the ``parameter`` column in the ``air_quality`` table and the
``id`` column in the ``air_quality_parameters_name`` both provide the
measured variable in a common format. The ``left_on`` and ``right_on``
arguments are used here (instead of just ``on``) to make the link
between the two tables.
.. raw:: html
</li>
</ul>
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
pandas supports also inner, outer, and right joins.
More information on join/merge of tables is provided in the user guide section on
:ref:`database style merging of tables <merging.join>`. Or have a look at the
:ref:`comparison with SQL<compare_with_sql.join>` page.
.. raw:: html
</div>
.. raw:: html
<div class="shadow gs-callout gs-callout-remember">
<h4>REMEMBER</h4>
- Multiple tables can be concatenated both column-wise and row-wise using
the ``concat`` function.
- For database-like merging/joining of tables, use the ``merge``
function.
.. raw:: html
</div>
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
See the user guide for a full description of the various :ref:`facilities to combine data tables <merging>`.
.. raw:: html
</div>
|