1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
{{ header }}
.. _api.arrays:
======================================
pandas arrays, scalars, and data types
======================================
*******
Objects
*******
.. currentmodule:: pandas
For most data types, pandas uses NumPy arrays as the concrete
objects contained with a :class:`Index`, :class:`Series`, or
:class:`DataFrame`.
For some data types, pandas extends NumPy's type system. String aliases for these types
can be found at :ref:`basics.dtypes`.
=================== ========================= ============================= =============================
Kind of Data pandas Data Type Scalar Array
=================== ========================= ============================= =============================
TZ-aware datetime :class:`DatetimeTZDtype` :class:`Timestamp` :ref:`api.arrays.datetime`
Timedeltas (none) :class:`Timedelta` :ref:`api.arrays.timedelta`
Period (time spans) :class:`PeriodDtype` :class:`Period` :ref:`api.arrays.period`
Intervals :class:`IntervalDtype` :class:`Interval` :ref:`api.arrays.interval`
Nullable Integer :class:`Int64Dtype`, ... (none) :ref:`api.arrays.integer_na`
Categorical :class:`CategoricalDtype` (none) :ref:`api.arrays.categorical`
Sparse :class:`SparseDtype` (none) :ref:`api.arrays.sparse`
Strings :class:`StringDtype` :class:`str` :ref:`api.arrays.string`
Boolean (with NA) :class:`BooleanDtype` :class:`bool` :ref:`api.arrays.bool`
PyArrow :class:`ArrowDtype` Python Scalars or :class:`NA` :ref:`api.arrays.arrow`
=================== ========================= ============================= =============================
pandas and third-party libraries can extend NumPy's type system (see :ref:`extending.extension-types`).
The top-level :meth:`array` method can be used to create a new array, which may be
stored in a :class:`Series`, :class:`Index`, or as a column in a :class:`DataFrame`.
.. autosummary::
:toctree: api/
array
.. _api.arrays.arrow:
PyArrow
-------
.. warning::
This feature is experimental, and the API can change in a future release without warning.
The :class:`arrays.ArrowExtensionArray` is backed by a :external+pyarrow:py:class:`pyarrow.ChunkedArray` with a
:external+pyarrow:py:class:`pyarrow.DataType` instead of a NumPy array and data type. The ``.dtype`` of a :class:`arrays.ArrowExtensionArray`
is an :class:`ArrowDtype`.
`Pyarrow <https://arrow.apache.org/docs/python/index.html>`__ provides similar array and `data type <https://arrow.apache.org/docs/python/api/datatypes.html>`__
support as NumPy including first-class nullability support for all data types, immutability and more.
.. note::
For string types (``pyarrow.string()``, ``string[pyarrow]``), PyArrow support is still facilitated
by :class:`arrays.ArrowStringArray` and ``StringDtype("pyarrow")``. See the :ref:`string section <api.arrays.string>`
below.
While individual values in an :class:`arrays.ArrowExtensionArray` are stored as a PyArrow objects, scalars are **returned**
as Python scalars corresponding to the data type, e.g. a PyArrow int64 will be returned as Python int, or :class:`NA` for missing
values.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.ArrowExtensionArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
ArrowDtype
.. _api.arrays.datetime:
Datetimes
---------
NumPy cannot natively represent timezone-aware datetimes. pandas supports this
with the :class:`arrays.DatetimeArray` extension array, which can hold timezone-naive
or timezone-aware values.
:class:`Timestamp`, a subclass of :class:`datetime.datetime`, is pandas'
scalar type for timezone-naive or timezone-aware datetime data.
.. autosummary::
:toctree: api/
Timestamp
Properties
~~~~~~~~~~
.. autosummary::
:toctree: api/
Timestamp.asm8
Timestamp.day
Timestamp.dayofweek
Timestamp.day_of_week
Timestamp.dayofyear
Timestamp.day_of_year
Timestamp.days_in_month
Timestamp.daysinmonth
Timestamp.fold
Timestamp.hour
Timestamp.is_leap_year
Timestamp.is_month_end
Timestamp.is_month_start
Timestamp.is_quarter_end
Timestamp.is_quarter_start
Timestamp.is_year_end
Timestamp.is_year_start
Timestamp.max
Timestamp.microsecond
Timestamp.min
Timestamp.minute
Timestamp.month
Timestamp.nanosecond
Timestamp.quarter
Timestamp.resolution
Timestamp.second
Timestamp.tz
Timestamp.tzinfo
Timestamp.value
Timestamp.week
Timestamp.weekofyear
Timestamp.year
Methods
~~~~~~~
.. autosummary::
:toctree: api/
Timestamp.astimezone
Timestamp.ceil
Timestamp.combine
Timestamp.ctime
Timestamp.date
Timestamp.day_name
Timestamp.dst
Timestamp.floor
Timestamp.freq
Timestamp.freqstr
Timestamp.fromordinal
Timestamp.fromtimestamp
Timestamp.isocalendar
Timestamp.isoformat
Timestamp.isoweekday
Timestamp.month_name
Timestamp.normalize
Timestamp.now
Timestamp.replace
Timestamp.round
Timestamp.strftime
Timestamp.strptime
Timestamp.time
Timestamp.timestamp
Timestamp.timetuple
Timestamp.timetz
Timestamp.to_datetime64
Timestamp.to_numpy
Timestamp.to_julian_date
Timestamp.to_period
Timestamp.to_pydatetime
Timestamp.today
Timestamp.toordinal
Timestamp.tz_convert
Timestamp.tz_localize
Timestamp.tzname
Timestamp.utcfromtimestamp
Timestamp.utcnow
Timestamp.utcoffset
Timestamp.utctimetuple
Timestamp.weekday
A collection of timestamps may be stored in a :class:`arrays.DatetimeArray`.
For timezone-aware data, the ``.dtype`` of a :class:`arrays.DatetimeArray` is a
:class:`DatetimeTZDtype`. For timezone-naive data, ``np.dtype("datetime64[ns]")``
is used.
If the data are timezone-aware, then every value in the array must have the same timezone.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.DatetimeArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
DatetimeTZDtype
.. _api.arrays.timedelta:
Timedeltas
----------
NumPy can natively represent timedeltas. pandas provides :class:`Timedelta`
for symmetry with :class:`Timestamp`.
.. autosummary::
:toctree: api/
Timedelta
Properties
~~~~~~~~~~
.. autosummary::
:toctree: api/
Timedelta.asm8
Timedelta.components
Timedelta.days
Timedelta.delta
Timedelta.freq
Timedelta.is_populated
Timedelta.max
Timedelta.microseconds
Timedelta.min
Timedelta.nanoseconds
Timedelta.resolution
Timedelta.seconds
Timedelta.value
Timedelta.view
Methods
~~~~~~~
.. autosummary::
:toctree: api/
Timedelta.ceil
Timedelta.floor
Timedelta.isoformat
Timedelta.round
Timedelta.to_pytimedelta
Timedelta.to_timedelta64
Timedelta.to_numpy
Timedelta.total_seconds
A collection of :class:`Timedelta` may be stored in a :class:`TimedeltaArray`.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.TimedeltaArray
.. _api.arrays.period:
Periods
-------
pandas represents spans of times as :class:`Period` objects.
Period
------
.. autosummary::
:toctree: api/
Period
Properties
~~~~~~~~~~
.. autosummary::
:toctree: api/
Period.day
Period.dayofweek
Period.day_of_week
Period.dayofyear
Period.day_of_year
Period.days_in_month
Period.daysinmonth
Period.end_time
Period.freq
Period.freqstr
Period.hour
Period.is_leap_year
Period.minute
Period.month
Period.ordinal
Period.quarter
Period.qyear
Period.second
Period.start_time
Period.week
Period.weekday
Period.weekofyear
Period.year
Methods
~~~~~~~
.. autosummary::
:toctree: api/
Period.asfreq
Period.now
Period.strftime
Period.to_timestamp
A collection of :class:`Period` may be stored in a :class:`arrays.PeriodArray`.
Every period in a :class:`arrays.PeriodArray` must have the same ``freq``.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.PeriodArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
PeriodDtype
.. _api.arrays.interval:
Intervals
---------
Arbitrary intervals can be represented as :class:`Interval` objects.
.. autosummary::
:toctree: api/
Interval
Properties
~~~~~~~~~~
.. autosummary::
:toctree: api/
Interval.closed
Interval.closed_left
Interval.closed_right
Interval.is_empty
Interval.left
Interval.length
Interval.mid
Interval.open_left
Interval.open_right
Interval.overlaps
Interval.right
A collection of intervals may be stored in an :class:`arrays.IntervalArray`.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.IntervalArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
IntervalDtype
.. Those attributes and methods are included in the API because the docstrings
.. of IntervalIndex and IntervalArray are shared. Including it here to make
.. sure a docstring page is built for them to avoid warnings
..
.. autosummary::
:toctree: api/
arrays.IntervalArray.left
arrays.IntervalArray.right
arrays.IntervalArray.closed
arrays.IntervalArray.mid
arrays.IntervalArray.length
arrays.IntervalArray.is_empty
arrays.IntervalArray.is_non_overlapping_monotonic
arrays.IntervalArray.from_arrays
arrays.IntervalArray.from_tuples
arrays.IntervalArray.from_breaks
arrays.IntervalArray.contains
arrays.IntervalArray.overlaps
arrays.IntervalArray.set_closed
arrays.IntervalArray.to_tuples
.. _api.arrays.integer_na:
Nullable integer
----------------
:class:`numpy.ndarray` cannot natively represent integer-data with missing values.
pandas provides this through :class:`arrays.IntegerArray`.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.IntegerArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8Dtype
UInt16Dtype
UInt32Dtype
UInt64Dtype
.. _api.arrays.categorical:
Categoricals
------------
pandas defines a custom data type for representing data that can take only a
limited, fixed set of values. The dtype of a :class:`Categorical` can be described by
a :class:`CategoricalDtype`.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
CategoricalDtype
.. autosummary::
:toctree: api/
CategoricalDtype.categories
CategoricalDtype.ordered
Categorical data can be stored in a :class:`pandas.Categorical`
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
Categorical
The alternative :meth:`Categorical.from_codes` constructor can be used when you
have the categories and integer codes already:
.. autosummary::
:toctree: api/
Categorical.from_codes
The dtype information is available on the :class:`Categorical`
.. autosummary::
:toctree: api/
Categorical.dtype
Categorical.categories
Categorical.ordered
Categorical.codes
``np.asarray(categorical)`` works by implementing the array interface. Be aware, that this converts
the :class:`Categorical` back to a NumPy array, so categories and order information is not preserved!
.. autosummary::
:toctree: api/
Categorical.__array__
A :class:`Categorical` can be stored in a :class:`Series` or :class:`DataFrame`.
To create a Series of dtype ``category``, use ``cat = s.astype(dtype)`` or
``Series(..., dtype=dtype)`` where ``dtype`` is either
* the string ``'category'``
* an instance of :class:`CategoricalDtype`.
If the :class:`Series` is of dtype :class:`CategoricalDtype`, ``Series.cat`` can be used to change the categorical
data. See :ref:`api.series.cat` for more.
.. _api.arrays.sparse:
Sparse
------
Data where a single value is repeated many times (e.g. ``0`` or ``NaN``) may
be stored efficiently as a :class:`arrays.SparseArray`.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.SparseArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
SparseDtype
The ``Series.sparse`` accessor may be used to access sparse-specific attributes
and methods if the :class:`Series` contains sparse values. See
:ref:`api.series.sparse` and :ref:`the user guide <sparse>` for more.
.. _api.arrays.string:
Strings
-------
When working with text data, where each valid element is a string or missing,
we recommend using :class:`StringDtype` (with the alias ``"string"``).
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.StringArray
arrays.ArrowStringArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
StringDtype
The ``Series.str`` accessor is available for :class:`Series` backed by a :class:`arrays.StringArray`.
See :ref:`api.series.str` for more.
.. _api.arrays.bool:
Nullable Boolean
----------------
The boolean dtype (with the alias ``"boolean"``) provides support for storing
boolean data (``True``, ``False``) with missing values, which is not possible
with a bool :class:`numpy.ndarray`.
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
arrays.BooleanArray
.. autosummary::
:toctree: api/
:template: autosummary/class_without_autosummary.rst
BooleanDtype
.. Dtype attributes which are manually listed in their docstrings: including
.. it here to make sure a docstring page is built for them
..
.. autosummary::
:toctree: api/
DatetimeTZDtype.unit
DatetimeTZDtype.tz
PeriodDtype.freq
IntervalDtype.subtype
*********
Utilities
*********
Constructors
------------
.. autosummary::
:toctree: api/
api.types.union_categoricals
api.types.infer_dtype
api.types.pandas_dtype
Data type introspection
~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: api/
api.types.is_bool_dtype
api.types.is_categorical_dtype
api.types.is_complex_dtype
api.types.is_datetime64_any_dtype
api.types.is_datetime64_dtype
api.types.is_datetime64_ns_dtype
api.types.is_datetime64tz_dtype
api.types.is_extension_type
api.types.is_extension_array_dtype
api.types.is_float_dtype
api.types.is_int64_dtype
api.types.is_integer_dtype
api.types.is_interval_dtype
api.types.is_numeric_dtype
api.types.is_object_dtype
api.types.is_period_dtype
api.types.is_signed_integer_dtype
api.types.is_string_dtype
api.types.is_timedelta64_dtype
api.types.is_timedelta64_ns_dtype
api.types.is_unsigned_integer_dtype
api.types.is_sparse
Iterable introspection
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: api/
api.types.is_dict_like
api.types.is_file_like
api.types.is_list_like
api.types.is_named_tuple
api.types.is_iterator
Scalar introspection
~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: api/
api.types.is_bool
api.types.is_categorical
api.types.is_complex
api.types.is_float
api.types.is_hashable
api.types.is_integer
api.types.is_interval
api.types.is_number
api.types.is_re
api.types.is_re_compilable
api.types.is_scalar
|