File: indexing.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (1964 lines) | stat: -rw-r--r-- 57,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
.. _indexing:

{{ header }}

***************************
Indexing and selecting data
***************************

The axis labeling information in pandas objects serves many purposes:

* Identifies data (i.e. provides *metadata*) using known indicators,
  important for analysis, visualization, and interactive console display.
* Enables automatic and explicit data alignment.
* Allows intuitive getting and setting of subsets of the data set.

In this section, we will focus on the final point: namely, how to slice, dice,
and generally get and set subsets of pandas objects. The primary focus will be
on Series and DataFrame as they have received more development attention in
this area.

.. note::

   The Python and NumPy indexing operators ``[]`` and attribute operator ``.``
   provide quick and easy access to pandas data structures across a wide range
   of use cases. This makes interactive work intuitive, as there's little new
   to learn if you already know how to deal with Python dictionaries and NumPy
   arrays. However, since the type of the data to be accessed isn't known in
   advance, directly using standard operators has some optimization limits. For
   production code, we recommended that you take advantage of the optimized
   pandas data access methods exposed in this chapter.

.. warning::

   Whether a copy or a reference is returned for a setting operation, may
   depend on the context. This is sometimes called ``chained assignment`` and
   should be avoided. See :ref:`Returning a View versus Copy
   <indexing.view_versus_copy>`.

See the :ref:`MultiIndex / Advanced Indexing <advanced>` for ``MultiIndex`` and more advanced indexing documentation.

See the :ref:`cookbook<cookbook.selection>` for some advanced strategies.

.. _indexing.choice:

Different choices for indexing
------------------------------

Object selection has had a number of user-requested additions in order to
support more explicit location based indexing. pandas now supports three types
of multi-axis indexing.

* ``.loc`` is primarily label based, but may also be used with a boolean array. ``.loc`` will raise ``KeyError`` when the items are not found. Allowed inputs are:

    * A single label, e.g. ``5`` or ``'a'`` (Note that ``5`` is interpreted as a
      *label* of the index. This use is **not** an integer position along the
      index.).
    * A list or array of labels ``['a', 'b', 'c']``.
    * A slice object with labels ``'a':'f'`` (Note that contrary to usual Python
      slices, **both** the start and the stop are included, when present in the
      index! See :ref:`Slicing with labels <indexing.slicing_with_labels>`
      and :ref:`Endpoints are inclusive <advanced.endpoints_are_inclusive>`.)
    * A boolean array (any ``NA`` values will be treated as ``False``).
    * A ``callable`` function with one argument (the calling Series or DataFrame) and
      that returns valid output for indexing (one of the above).

  See more at :ref:`Selection by Label <indexing.label>`.

* ``.iloc`` is primarily integer position based (from ``0`` to
  ``length-1`` of the axis), but may also be used with a boolean
  array.  ``.iloc`` will raise ``IndexError`` if a requested
  indexer is out-of-bounds, except *slice* indexers which allow
  out-of-bounds indexing.  (this conforms with Python/NumPy *slice*
  semantics).  Allowed inputs are:

    * An integer e.g. ``5``.
    * A list or array of integers ``[4, 3, 0]``.
    * A slice object with ints ``1:7``.
    * A boolean array (any ``NA`` values will be treated as ``False``).
    * A ``callable`` function with one argument (the calling Series or DataFrame) and
      that returns valid output for indexing (one of the above).

  See more at :ref:`Selection by Position <indexing.integer>`,
  :ref:`Advanced Indexing <advanced>` and :ref:`Advanced
  Hierarchical <advanced.advanced_hierarchical>`.

* ``.loc``, ``.iloc``, and also ``[]`` indexing can accept a ``callable`` as indexer. See more at :ref:`Selection By Callable <indexing.callable>`.

Getting values from an object with multi-axes selection uses the following
notation (using ``.loc`` as an example, but the following applies to ``.iloc`` as
well). Any of the axes accessors may be the null slice ``:``. Axes left out of
the specification are assumed to be ``:``, e.g. ``p.loc['a']`` is equivalent to
``p.loc['a', :]``.

.. csv-table::
    :header: "Object Type", "Indexers"
    :widths: 30, 50
    :delim: ;

    Series; ``s.loc[indexer]``
    DataFrame; ``df.loc[row_indexer,column_indexer]``

.. _indexing.basics:

Basics
------

As mentioned when introducing the data structures in the :ref:`last section
<basics>`, the primary function of indexing with ``[]`` (a.k.a. ``__getitem__``
for those familiar with implementing class behavior in Python) is selecting out
lower-dimensional slices. The following table shows return type values when
indexing pandas objects with ``[]``:

.. csv-table::
    :header: "Object Type", "Selection", "Return Value Type"
    :widths: 30, 30, 60
    :delim: ;

    Series; ``series[label]``; scalar value
    DataFrame; ``frame[colname]``; ``Series`` corresponding to colname

Here we construct a simple time series data set to use for illustrating the
indexing functionality:

.. ipython:: python

   dates = pd.date_range('1/1/2000', periods=8)
   df = pd.DataFrame(np.random.randn(8, 4),
                     index=dates, columns=['A', 'B', 'C', 'D'])
   df

.. note::

   None of the indexing functionality is time series specific unless
   specifically stated.

Thus, as per above, we have the most basic indexing using ``[]``:

.. ipython:: python

   s = df['A']
   s[dates[5]]

You can pass a list of columns to ``[]`` to select columns in that order.
If a column is not contained in the DataFrame, an exception will be
raised. Multiple columns can also be set in this manner:

.. ipython:: python

   df
   df[['B', 'A']] = df[['A', 'B']]
   df

You may find this useful for applying a transform (in-place) to a subset of the
columns.

.. warning::

   pandas aligns all AXES when setting ``Series`` and ``DataFrame`` from ``.loc``, and ``.iloc``.

   This will **not** modify ``df`` because the column alignment is before value assignment.

   .. ipython:: python

      df[['A', 'B']]
      df.loc[:, ['B', 'A']] = df[['A', 'B']]
      df[['A', 'B']]

   The correct way to swap column values is by using raw values:

   .. ipython:: python

      df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy()
      df[['A', 'B']]


Attribute access
----------------

.. _indexing.columns.multiple:

.. _indexing.df_cols:

.. _indexing.attribute_access:

You may access an index on a ``Series`` or  column on a ``DataFrame`` directly
as an attribute:

.. ipython:: python

   sa = pd.Series([1, 2, 3], index=list('abc'))
   dfa = df.copy()

.. ipython:: python

   sa.b
   dfa.A

.. ipython:: python

   sa.a = 5
   sa
   dfa.A = list(range(len(dfa.index)))  # ok if A already exists
   dfa
   dfa['A'] = list(range(len(dfa.index)))  # use this form to create a new column
   dfa

.. warning::

   - You can use this access only if the index element is a valid Python identifier, e.g. ``s.1`` is not allowed.
     See `here for an explanation of valid identifiers
     <https://docs.python.org/3/reference/lexical_analysis.html#identifiers>`__.

   - The attribute will not be available if it conflicts with an existing method name, e.g. ``s.min`` is not allowed, but ``s['min']`` is possible.

   - Similarly, the attribute will not be available if it conflicts with any of the following list: ``index``,
     ``major_axis``, ``minor_axis``, ``items``.

   - In any of these cases, standard indexing will still work, e.g. ``s['1']``, ``s['min']``, and ``s['index']`` will
     access the corresponding element or column.

If you are using the IPython environment, you may also use tab-completion to
see these accessible attributes.

You can also assign a ``dict`` to a row of a ``DataFrame``:

.. ipython:: python

   x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
   x.iloc[1] = {'x': 9, 'y': 99}
   x

You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful;
if you try to use attribute access to create a new column, it creates a new attribute rather than a
new column. In 0.21.0 and later, this will raise a ``UserWarning``:

.. code-block:: ipython

    In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
    In [2]: df.two = [4, 5, 6]
    UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access
    In [3]: df
    Out[3]:
       one
    0  1.0
    1  2.0
    2  3.0

Slicing ranges
--------------

The most robust and consistent way of slicing ranges along arbitrary axes is
described in the :ref:`Selection by Position <indexing.integer>` section
detailing the ``.iloc`` method. For now, we explain the semantics of slicing using the ``[]`` operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of
the values and the corresponding labels:

.. ipython:: python

   s[:5]
   s[::2]
   s[::-1]

Note that setting works as well:

.. ipython:: python

   s2 = s.copy()
   s2[:5] = 0
   s2

With DataFrame, slicing inside of ``[]`` **slices the rows**. This is provided
largely as a convenience since it is such a common operation.

.. ipython:: python

   df[:3]
   df[::-1]

.. _indexing.label:

Selection by label
------------------

.. warning::

   Whether a copy or a reference is returned for a setting operation, may depend on the context.
   This is sometimes called ``chained assignment`` and should be avoided.
   See :ref:`Returning a View versus Copy <indexing.view_versus_copy>`.

.. warning::

   ``.loc`` is strict when you present slicers that are not compatible (or convertible) with the index type. For example
   using integers in a ``DatetimeIndex``. These will raise a ``TypeError``.

  .. ipython:: python

     dfl = pd.DataFrame(np.random.randn(5, 4),
                        columns=list('ABCD'),
                        index=pd.date_range('20130101', periods=5))
     dfl

  .. code-block:: ipython

     In [4]: dfl.loc[2:3]
     TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>

  String likes in slicing *can* be convertible to the type of the index and lead to natural slicing.

  .. ipython:: python

     dfl.loc['20130102':'20130104']

.. warning::

   .. versionchanged:: 1.0.0

   pandas will raise a ``KeyError`` if indexing with a list with missing labels. See :ref:`list-like Using loc with
   missing keys in a list is Deprecated <indexing.deprecate_loc_reindex_listlike>`.

pandas provides a suite of methods in order to have **purely label based indexing**. This is a strict inclusion based protocol.
Every label asked for must be in the index, or a ``KeyError`` will be raised.
When slicing, both the start bound **AND** the stop bound are *included*, if present in the index.
Integers are valid labels, but they refer to the label **and not the position**.

The ``.loc`` attribute is the primary access method. The following are valid inputs:

* A single label, e.g. ``5`` or ``'a'`` (Note that ``5`` is interpreted as a *label* of the index. This use is **not** an integer position along the index.).
* A list or array of labels ``['a', 'b', 'c']``.
* A slice object with labels ``'a':'f'`` (Note that contrary to usual Python
  slices, **both** the start and the stop are included, when present in the
  index! See :ref:`Slicing with labels <indexing.slicing_with_labels>`.
* A boolean array.
* A ``callable``, see :ref:`Selection By Callable <indexing.callable>`.

.. ipython:: python

   s1 = pd.Series(np.random.randn(6), index=list('abcdef'))
   s1
   s1.loc['c':]
   s1.loc['b']

Note that setting works as well:

.. ipython:: python

   s1.loc['c':] = 0
   s1

With a DataFrame:

.. ipython:: python

   df1 = pd.DataFrame(np.random.randn(6, 4),
                      index=list('abcdef'),
                      columns=list('ABCD'))
   df1
   df1.loc[['a', 'b', 'd'], :]

Accessing via label slices:

.. ipython:: python

   df1.loc['d':, 'A':'C']

For getting a cross section using a label (equivalent to ``df.xs('a')``):

.. ipython:: python

   df1.loc['a']

For getting values with a boolean array:

.. ipython:: python

   df1.loc['a'] > 0
   df1.loc[:, df1.loc['a'] > 0]

NA values in a boolean array propagate as ``False``:

.. versionchanged:: 1.0.2

.. ipython:: python

   mask = pd.array([True, False, True, False, pd.NA, False], dtype="boolean")
   mask
   df1[mask]

For getting a value explicitly:

.. ipython:: python

   # this is also equivalent to ``df1.at['a','A']``
   df1.loc['a', 'A']

.. _indexing.slicing_with_labels:

Slicing with labels
~~~~~~~~~~~~~~~~~~~

When using ``.loc`` with slices, if both the start and the stop labels are
present in the index, then elements *located* between the two (including them)
are returned:

.. ipython:: python

   s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])
   s.loc[3:5]

If at least one of the two is absent, but the index is sorted, and can be
compared against start and stop labels, then slicing will still work as
expected, by selecting labels which *rank* between the two:

.. ipython:: python

   s.sort_index()
   s.sort_index().loc[1:6]

However, if at least one of the two is absent *and* the index is not sorted, an
error will be raised (since doing otherwise would be computationally expensive,
as well as potentially ambiguous for mixed type indexes). For instance, in the
above example, ``s.loc[1:6]`` would raise ``KeyError``.

For the rationale behind this behavior, see
:ref:`Endpoints are inclusive <advanced.endpoints_are_inclusive>`.

.. ipython:: python

   s = pd.Series(list('abcdef'), index=[0, 3, 2, 5, 4, 2])
   s.loc[3:5]

Also, if the index has duplicate labels *and* either the start or the stop label is duplicated,
an error will be raised. For instance, in the above example, ``s.loc[2:5]`` would raise a ``KeyError``.

For more information about duplicate labels, see
:ref:`Duplicate Labels <duplicates>`.

.. _indexing.integer:

Selection by position
---------------------

.. warning::

   Whether a copy or a reference is returned for a setting operation, may depend on the context.
   This is sometimes called ``chained assignment`` and should be avoided.
   See :ref:`Returning a View versus Copy <indexing.view_versus_copy>`.

pandas provides a suite of methods in order to get **purely integer based indexing**. The semantics follow closely Python and NumPy slicing. These are ``0-based`` indexing. When slicing, the start bound is *included*, while the upper bound is *excluded*. Trying to use a non-integer, even a **valid** label will raise an ``IndexError``.

The ``.iloc`` attribute is the primary access method. The following are valid inputs:

* An integer e.g. ``5``.
* A list or array of integers ``[4, 3, 0]``.
* A slice object with ints ``1:7``.
* A boolean array.
* A ``callable``, see :ref:`Selection By Callable <indexing.callable>`.

.. ipython:: python

   s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2)))
   s1
   s1.iloc[:3]
   s1.iloc[3]

Note that setting works as well:

.. ipython:: python

   s1.iloc[:3] = 0
   s1

With a DataFrame:

.. ipython:: python

   df1 = pd.DataFrame(np.random.randn(6, 4),
                      index=list(range(0, 12, 2)),
                      columns=list(range(0, 8, 2)))
   df1

Select via integer slicing:

.. ipython:: python

   df1.iloc[:3]
   df1.iloc[1:5, 2:4]

Select via integer list:

.. ipython:: python

   df1.iloc[[1, 3, 5], [1, 3]]

.. ipython:: python

   df1.iloc[1:3, :]

.. ipython:: python

   df1.iloc[:, 1:3]

.. ipython:: python

   # this is also equivalent to ``df1.iat[1,1]``
   df1.iloc[1, 1]

For getting a cross section using an integer position (equiv to ``df.xs(1)``):

.. ipython:: python

   df1.iloc[1]

Out of range slice indexes are handled gracefully just as in Python/NumPy.

.. ipython:: python

    # these are allowed in Python/NumPy.
    x = list('abcdef')
    x
    x[4:10]
    x[8:10]
    s = pd.Series(x)
    s
    s.iloc[4:10]
    s.iloc[8:10]

Note that using slices that go out of bounds can result in
an empty axis (e.g. an empty DataFrame being returned).

.. ipython:: python

   dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
   dfl
   dfl.iloc[:, 2:3]
   dfl.iloc[:, 1:3]
   dfl.iloc[4:6]

A single indexer that is out of bounds will raise an ``IndexError``.
A list of indexers where any element is out of bounds will raise an
``IndexError``.

.. code-block:: python

   >>> dfl.iloc[[4, 5, 6]]
   IndexError: positional indexers are out-of-bounds

   >>> dfl.iloc[:, 4]
   IndexError: single positional indexer is out-of-bounds

.. _indexing.callable:

Selection by callable
---------------------

``.loc``, ``.iloc``, and also ``[]`` indexing can accept a ``callable`` as indexer.
The ``callable`` must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.

.. ipython:: python

   df1 = pd.DataFrame(np.random.randn(6, 4),
                      index=list('abcdef'),
                      columns=list('ABCD'))
   df1

   df1.loc[lambda df: df['A'] > 0, :]
   df1.loc[:, lambda df: ['A', 'B']]

   df1.iloc[:, lambda df: [0, 1]]

   df1[lambda df: df.columns[0]]


You can use callable indexing in ``Series``.

.. ipython:: python

   df1['A'].loc[lambda s: s > 0]

Using these methods / indexers, you can chain data selection operations
without using a temporary variable.

.. ipython:: python

   bb = pd.read_csv('data/baseball.csv', index_col='id')
   (bb.groupby(['year', 'team']).sum(numeric_only=True)
      .loc[lambda df: df['r'] > 100])


.. _combining_positional_and_label_based_indexing:

Combining positional and label-based indexing
---------------------------------------------

If you wish to get the 0th and the 2nd elements from the index in the 'A' column, you can do:

.. ipython:: python

  dfd = pd.DataFrame({'A': [1, 2, 3],
                      'B': [4, 5, 6]},
                     index=list('abc'))
  dfd
  dfd.loc[dfd.index[[0, 2]], 'A']

This can also be expressed using ``.iloc``, by explicitly getting locations on the indexers, and using
*positional* indexing to select things.

.. ipython:: python

  dfd.iloc[[0, 2], dfd.columns.get_loc('A')]

For getting *multiple* indexers, using ``.get_indexer``:

.. ipython:: python

  dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]


.. _deprecate_loc_reindex_listlike:
.. _indexing.deprecate_loc_reindex_listlike:

Indexing with list with missing labels is deprecated
----------------------------------------------------

.. warning::

   .. versionchanged:: 1.0.0

   Using ``.loc`` or ``[]`` with a list with one or more missing labels will no longer reindex, in favor of ``.reindex``.

In prior versions, using ``.loc[list-of-labels]`` would work as long as *at least 1* of the keys was found (otherwise it
would raise a ``KeyError``). This behavior was changed and will now raise a ``KeyError`` if at least one label is missing.
The recommended alternative is to use ``.reindex()``.

For example.

.. ipython:: python

   s = pd.Series([1, 2, 3])
   s

Selection with all keys found is unchanged.

.. ipython:: python

   s.loc[[1, 2]]

Previous behavior

.. code-block:: ipython

   In [4]: s.loc[[1, 2, 3]]
   Out[4]:
   1    2.0
   2    3.0
   3    NaN
   dtype: float64


Current behavior

.. code-block:: ipython

   In [4]: s.loc[[1, 2, 3]]
   Passing list-likes to .loc with any non-matching elements will raise
   KeyError in the future, you can use .reindex() as an alternative.

   See the documentation here:
   https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike

   Out[4]:
   1    2.0
   2    3.0
   3    NaN
   dtype: float64


Reindexing
~~~~~~~~~~

The idiomatic way to achieve selecting potentially not-found elements is via ``.reindex()``. See also the section on :ref:`reindexing <basics.reindexing>`.

.. ipython:: python

  s.reindex([1, 2, 3])

Alternatively, if you want to select only *valid* keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.

.. ipython:: python

   labels = [1, 2, 3]
   s.loc[s.index.intersection(labels)]

Having a duplicated index will raise for a ``.reindex()``:

.. ipython:: python

   s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c'])
   labels = ['c', 'd']

.. code-block:: ipython

   In [17]: s.reindex(labels)
   ValueError: cannot reindex on an axis with duplicate labels

Generally, you can intersect the desired labels with the current
axis, and then reindex.

.. ipython:: python

   s.loc[s.index.intersection(labels)].reindex(labels)

However, this would *still* raise if your resulting index is duplicated.

.. code-block:: ipython

   In [41]: labels = ['a', 'd']

   In [42]: s.loc[s.index.intersection(labels)].reindex(labels)
   ValueError: cannot reindex on an axis with duplicate labels


.. _indexing.basics.partial_setting:

Selecting random samples
------------------------

A random selection of rows or columns from a Series or DataFrame with the :meth:`~DataFrame.sample` method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

.. ipython:: python

    s = pd.Series([0, 1, 2, 3, 4, 5])

    # When no arguments are passed, returns 1 row.
    s.sample()

    # One may specify either a number of rows:
    s.sample(n=3)

    # Or a fraction of the rows:
    s.sample(frac=0.5)

By default, ``sample`` will return each row at most once, but one can also sample with replacement
using the ``replace`` option:

.. ipython:: python

    s = pd.Series([0, 1, 2, 3, 4, 5])

    # Without replacement (default):
    s.sample(n=6, replace=False)

    # With replacement:
    s.sample(n=6, replace=True)


By default, each row has an equal probability of being selected, but if you want rows
to have different probabilities, you can pass the ``sample`` function sampling weights as
``weights``. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:

.. ipython:: python

    s = pd.Series([0, 1, 2, 3, 4, 5])
    example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
    s.sample(n=3, weights=example_weights)

    # Weights will be re-normalized automatically
    example_weights2 = [0.5, 0, 0, 0, 0, 0]
    s.sample(n=1, weights=example_weights2)

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights
(provided you are sampling rows and not columns) by simply passing the name of the column
as a string.

.. ipython:: python

    df2 = pd.DataFrame({'col1': [9, 8, 7, 6],
                        'weight_column': [0.5, 0.4, 0.1, 0]})
    df2.sample(n=3, weights='weight_column')

``sample`` also allows users to sample columns instead of rows using the ``axis`` argument.

.. ipython:: python

    df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
    df3.sample(n=1, axis=1)

Finally, one can also set a seed for ``sample``'s random number generator using the ``random_state`` argument, which will accept either an integer (as a seed) or a NumPy RandomState object.

.. ipython:: python

    df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})

    # With a given seed, the sample will always draw the same rows.
    df4.sample(n=2, random_state=2)
    df4.sample(n=2, random_state=2)



Setting with enlargement
------------------------

The ``.loc/[]`` operations can perform enlargement when setting a non-existent key for that axis.

In the ``Series`` case this is effectively an appending operation.

.. ipython:: python

   se = pd.Series([1, 2, 3])
   se
   se[5] = 5.
   se

A ``DataFrame`` can be enlarged on either axis via ``.loc``.

.. ipython:: python

   dfi = pd.DataFrame(np.arange(6).reshape(3, 2),
                      columns=['A', 'B'])
   dfi
   dfi.loc[:, 'C'] = dfi.loc[:, 'A']
   dfi

This is like an ``append`` operation on the ``DataFrame``.

.. ipython:: python

   dfi.loc[3] = 5
   dfi

.. _indexing.basics.get_value:

Fast scalar value getting and setting
-------------------------------------

Since indexing with ``[]`` must handle a lot of cases (single-label access,
slicing, boolean indexing, etc.), it has a bit of overhead in order to figure
out what you're asking for. If you only want to access a scalar value, the
fastest way is to use the ``at`` and ``iat`` methods, which are implemented on
all of the data structures.

Similarly to ``loc``, ``at`` provides **label** based scalar lookups, while, ``iat`` provides **integer** based lookups analogously to ``iloc``

.. ipython:: python

   s.iat[5]
   df.at[dates[5], 'A']
   df.iat[3, 0]

You can also set using these same indexers.

.. ipython:: python

   df.at[dates[5], 'E'] = 7
   df.iat[3, 0] = 7

``at`` may enlarge the object in-place as above if the indexer is missing.

.. ipython:: python

   df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7
   df

Boolean indexing
----------------

.. _indexing.boolean:

Another common operation is the use of boolean vectors to filter the data.
The operators are: ``|`` for ``or``, ``&`` for ``and``, and ``~`` for ``not``.
These **must** be grouped by using parentheses, since by default Python will
evaluate an expression such as ``df['A'] > 2 & df['B'] < 3`` as
``df['A'] > (2 & df['B']) < 3``, while the desired evaluation order is
``(df['A'] > 2) & (df['B'] < 3)``.

Using a boolean vector to index a Series works exactly as in a NumPy ndarray:

.. ipython:: python

   s = pd.Series(range(-3, 4))
   s
   s[s > 0]
   s[(s < -1) | (s > 0.5)]
   s[~(s < 0)]

You may select rows from a DataFrame using a boolean vector the same length as
the DataFrame's index (for example, something derived from one of the columns
of the DataFrame):

.. ipython:: python

   df[df['A'] > 0]

List comprehensions and the ``map`` method of Series can also be used to produce
more complex criteria:

.. ipython:: python

   df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
                       'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
                       'c': np.random.randn(7)})

   # only want 'two' or 'three'
   criterion = df2['a'].map(lambda x: x.startswith('t'))

   df2[criterion]

   # equivalent but slower
   df2[[x.startswith('t') for x in df2['a']]]

   # Multiple criteria
   df2[criterion & (df2['b'] == 'x')]

With the choice methods :ref:`Selection by Label <indexing.label>`, :ref:`Selection by Position <indexing.integer>`,
and :ref:`Advanced Indexing <advanced>` you may select along more than one axis using boolean vectors combined with other indexing expressions.

.. ipython:: python

   df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']

.. warning::

   ``iloc`` supports two kinds of boolean indexing. If the indexer is a boolean ``Series``,
   an error will be raised. For instance, in the following example, ``df.iloc[s.values, 1]`` is ok.
   The boolean indexer is an array. But ``df.iloc[s, 1]`` would raise ``ValueError``.

   .. ipython:: python

      df = pd.DataFrame([[1, 2], [3, 4], [5, 6]],
                        index=list('abc'),
                        columns=['A', 'B'])
      s = (df['A'] > 2)
      s

      df.loc[s, 'B']

      df.iloc[s.values, 1]

.. _indexing.basics.indexing_isin:

Indexing with isin
------------------

Consider the :meth:`~Series.isin` method of ``Series``, which returns a boolean
vector that is true wherever the ``Series`` elements exist in the passed list.
This allows you to select rows where one or more columns have values you want:

.. ipython:: python

   s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
   s
   s.isin([2, 4, 6])
   s[s.isin([2, 4, 6])]

The same method is available for ``Index`` objects and is useful for the cases
when you don't know which of the sought labels are in fact present:

.. ipython:: python

   s[s.index.isin([2, 4, 6])]

   # compare it to the following
   s.reindex([2, 4, 6])

In addition to that, ``MultiIndex`` allows selecting a separate level to use
in the membership check:

.. ipython:: python

   s_mi = pd.Series(np.arange(6),
                    index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
   s_mi
   s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
   s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]

DataFrame also has an :meth:`~DataFrame.isin` method.  When calling ``isin``, pass a set of
values as either an array or dict.  If values is an array, ``isin`` returns
a DataFrame of booleans that is the same shape as the original DataFrame, with True
wherever the element is in the sequence of values.

.. ipython:: python

   df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
                      'ids2': ['a', 'n', 'c', 'n']})

   values = ['a', 'b', 1, 3]

   df.isin(values)

Oftentimes you'll want to match certain values with certain columns.
Just make values a ``dict`` where the key is the column, and the value is
a list of items you want to check for.

.. ipython:: python

   values = {'ids': ['a', 'b'], 'vals': [1, 3]}

   df.isin(values)

To return the DataFrame of booleans where the values are *not* in the original DataFrame,
use the ``~`` operator:

.. ipython:: python

   values = {'ids': ['a', 'b'], 'vals': [1, 3]}

   ~df.isin(values)

Combine DataFrame's ``isin`` with the ``any()`` and ``all()`` methods to
quickly select subsets of your data that meet a given criteria.
To select a row where each column meets its own criterion:

.. ipython:: python

  values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}

  row_mask = df.isin(values).all(1)

  df[row_mask]

.. _indexing.where_mask:

The :meth:`~pandas.DataFrame.where` Method and Masking
------------------------------------------------------

Selecting values from a Series with a boolean vector generally returns a
subset of the data. To guarantee that selection output has the same shape as
the original data, you can use the ``where`` method in ``Series`` and ``DataFrame``.

To return only the selected rows:

.. ipython:: python

   s[s > 0]

To return a Series of the same shape as the original:

.. ipython:: python

   s.where(s > 0)

Selecting values from a DataFrame with a boolean criterion now also preserves
input data shape. ``where`` is used under the hood as the implementation.
The code below is equivalent to ``df.where(df < 0)``.

.. ipython:: python
   :suppress:

   dates = pd.date_range('1/1/2000', periods=8)
   df = pd.DataFrame(np.random.randn(8, 4),
                     index=dates, columns=['A', 'B', 'C', 'D'])

.. ipython:: python

   df[df < 0]

In addition, ``where`` takes an optional ``other`` argument for replacement of
values where the condition is False, in the returned copy.

.. ipython:: python

   df.where(df < 0, -df)

You may wish to set values based on some boolean criteria.
This can be done intuitively like so:

.. ipython:: python

   s2 = s.copy()
   s2[s2 < 0] = 0
   s2

   df2 = df.copy()
   df2[df2 < 0] = 0
   df2

By default, ``where`` returns a modified copy of the data. There is an
optional parameter ``inplace`` so that the original data can be modified
without creating a copy:

.. ipython:: python

   df_orig = df.copy()
   df_orig.where(df > 0, -df, inplace=True)
   df_orig

.. note::

   The signature for :func:`DataFrame.where` differs from :func:`numpy.where`.
   Roughly ``df1.where(m, df2)`` is equivalent to ``np.where(m, df1, df2)``.

   .. ipython:: python

      df.where(df < 0, -df) == np.where(df < 0, df, -df)

**Alignment**

Furthermore, ``where`` aligns the input boolean condition (ndarray or DataFrame),
such that partial selection with setting is possible. This is analogous to
partial setting via ``.loc`` (but on the contents rather than the axis labels).

.. ipython:: python

   df2 = df.copy()
   df2[df2[1:4] > 0] = 3
   df2

Where can also accept ``axis`` and ``level`` parameters to align the input when
performing the ``where``.

.. ipython:: python

   df2 = df.copy()
   df2.where(df2 > 0, df2['A'], axis='index')

This is equivalent to (but faster than) the following.

.. ipython:: python

   df2 = df.copy()
   df.apply(lambda x, y: x.where(x > 0, y), y=df['A'])

``where`` can accept a callable as condition and ``other`` arguments. The function must
be with one argument (the calling Series or DataFrame) and that returns valid output
as condition and ``other`` argument.

.. ipython:: python

   df3 = pd.DataFrame({'A': [1, 2, 3],
                       'B': [4, 5, 6],
                       'C': [7, 8, 9]})
   df3.where(lambda x: x > 4, lambda x: x + 10)

Mask
~~~~

:meth:`~pandas.DataFrame.mask` is the inverse boolean operation of ``where``.

.. ipython:: python

   s.mask(s >= 0)
   df.mask(df >= 0)

.. _indexing.np_where:

Setting with enlargement conditionally using :func:`numpy`
----------------------------------------------------------

An alternative to :meth:`~pandas.DataFrame.where` is to use :func:`numpy.where`.
Combined with setting a new column, you can use it to enlarge a DataFrame where the
values are determined conditionally.

Consider you have two choices to choose from in the following DataFrame. And you want to
set a new column color to 'green' when the second column has 'Z'.  You can do the
following:

.. ipython:: python

   df = pd.DataFrame({'col1': list('ABBC'), 'col2': list('ZZXY')})
   df['color'] = np.where(df['col2'] == 'Z', 'green', 'red')
   df

If you have multiple conditions, you can use :func:`numpy.select` to achieve that.  Say
corresponding to three conditions there are three choice of colors, with a fourth color
as a fallback, you can do the following.

.. ipython:: python

   conditions = [
       (df['col2'] == 'Z') & (df['col1'] == 'A'),
       (df['col2'] == 'Z') & (df['col1'] == 'B'),
       (df['col1'] == 'B')
   ]
   choices = ['yellow', 'blue', 'purple']
   df['color'] = np.select(conditions, choices, default='black')
   df

.. _indexing.query:

The :meth:`~pandas.DataFrame.query` Method
------------------------------------------

:class:`~pandas.DataFrame` objects have a :meth:`~pandas.DataFrame.query`
method that allows selection using an expression.

You can get the value of the frame where column ``b`` has values
between the values of columns ``a`` and ``c``. For example:

.. ipython:: python

   n = 10
   df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
   df

   # pure python
   df[(df['a'] < df['b']) & (df['b'] < df['c'])]

   # query
   df.query('(a < b) & (b < c)')

Do the same thing but fall back on a named index if there is no column
with the name ``a``.

.. ipython:: python

   df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))
   df.index.name = 'a'
   df
   df.query('a < b and b < c')

If instead you don't want to or cannot name your index, you can use the name
``index`` in your query expression:

.. ipython:: python

   df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))
   df
   df.query('index < b < c')

.. note::

   If the name of your index overlaps with a column name, the column name is
   given precedence. For example,

   .. ipython:: python

      df = pd.DataFrame({'a': np.random.randint(5, size=5)})
      df.index.name = 'a'
      df.query('a > 2')  # uses the column 'a', not the index

   You can still use the index in a query expression by using the special
   identifier 'index':

   .. ipython:: python

      df.query('index > 2')

   If for some reason you have a column named ``index``, then you can refer to
   the index as ``ilevel_0`` as well, but at this point you should consider
   renaming your columns to something less ambiguous.


:class:`~pandas.MultiIndex` :meth:`~pandas.DataFrame.query` Syntax
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can also use the levels of a ``DataFrame`` with a
:class:`~pandas.MultiIndex` as if they were columns in the frame:

.. ipython:: python

   n = 10
   colors = np.random.choice(['red', 'green'], size=n)
   foods = np.random.choice(['eggs', 'ham'], size=n)
   colors
   foods

   index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])
   df = pd.DataFrame(np.random.randn(n, 2), index=index)
   df
   df.query('color == "red"')

If the levels of the ``MultiIndex`` are unnamed, you can refer to them using
special names:

.. ipython:: python

   df.index.names = [None, None]
   df
   df.query('ilevel_0 == "red"')


The convention is ``ilevel_0``, which means "index level 0" for the 0th level
of the ``index``.


:meth:`~pandas.DataFrame.query` Use Cases
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A use case for :meth:`~pandas.DataFrame.query` is when you have a collection of
:class:`~pandas.DataFrame` objects that have a subset of column names (or index
levels/names) in common. You can pass the same query to both frames *without*
having to specify which frame you're interested in querying

.. ipython:: python

   df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
   df
   df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)
   df2
   expr = '0.0 <= a <= c <= 0.5'
   map(lambda frame: frame.query(expr), [df, df2])

:meth:`~pandas.DataFrame.query` Python versus pandas Syntax Comparison
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Full numpy-like syntax:

.. ipython:: python

   df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))
   df
   df.query('(a < b) & (b < c)')
   df[(df['a'] < df['b']) & (df['b'] < df['c'])]

Slightly nicer by removing the parentheses (comparison operators bind tighter
than ``&`` and ``|``):

.. ipython:: python

   df.query('a < b & b < c')

Use English instead of symbols:

.. ipython:: python

   df.query('a < b and b < c')

Pretty close to how you might write it on paper:

.. ipython:: python

   df.query('a < b < c')

The ``in`` and ``not in`` operators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:meth:`~pandas.DataFrame.query` also supports special use of Python's ``in`` and
``not in`` comparison operators, providing a succinct syntax for calling the
``isin`` method of a ``Series`` or ``DataFrame``.

.. ipython:: python

   # get all rows where columns "a" and "b" have overlapping values
   df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
                      'c': np.random.randint(5, size=12),
                      'd': np.random.randint(9, size=12)})
   df
   df.query('a in b')

   # How you'd do it in pure Python
   df[df['a'].isin(df['b'])]

   df.query('a not in b')

   # pure Python
   df[~df['a'].isin(df['b'])]


You can combine this with other expressions for very succinct queries:


.. ipython:: python

   # rows where cols a and b have overlapping values
   # and col c's values are less than col d's
   df.query('a in b and c < d')

   # pure Python
   df[df['b'].isin(df['a']) & (df['c'] < df['d'])]


.. note::

   Note that ``in`` and ``not in`` are evaluated in Python, since ``numexpr``
   has no equivalent of this operation. However, **only the** ``in``/``not in``
   **expression itself** is evaluated in vanilla Python. For example, in the
   expression

   .. code-block:: python

      df.query('a in b + c + d')

   ``(b + c + d)`` is evaluated by ``numexpr`` and *then* the ``in``
   operation is evaluated in plain Python. In general, any operations that can
   be evaluated using ``numexpr`` will be.

Special use of the ``==`` operator with ``list`` objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Comparing a ``list`` of values to a column using ``==``/``!=`` works similarly
to ``in``/``not in``.

.. ipython:: python

   df.query('b == ["a", "b", "c"]')

   # pure Python
   df[df['b'].isin(["a", "b", "c"])]

   df.query('c == [1, 2]')

   df.query('c != [1, 2]')

   # using in/not in
   df.query('[1, 2] in c')

   df.query('[1, 2] not in c')

   # pure Python
   df[df['c'].isin([1, 2])]


Boolean operators
~~~~~~~~~~~~~~~~~

You can negate boolean expressions with the word ``not`` or the ``~`` operator.

.. ipython:: python

   df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
   df['bools'] = np.random.rand(len(df)) > 0.5
   df.query('~bools')
   df.query('not bools')
   df.query('not bools') == df[~df['bools']]

Of course, expressions can be arbitrarily complex too:

.. ipython:: python

   # short query syntax
   shorter = df.query('a < b < c and (not bools) or bools > 2')

   # equivalent in pure Python
   longer = df[(df['a'] < df['b'])
               & (df['b'] < df['c'])
               & (~df['bools'])
               | (df['bools'] > 2)]

   shorter
   longer

   shorter == longer


Performance of :meth:`~pandas.DataFrame.query`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

``DataFrame.query()`` using ``numexpr`` is slightly faster than Python for
large frames.

.. image:: ../_static/query-perf.png

.. note::

   You will only see the performance benefits of using the ``numexpr`` engine
   with ``DataFrame.query()`` if your frame has more than approximately 200,000
   rows.

      .. image:: ../_static/query-perf-small.png

This plot was created using a ``DataFrame`` with 3 columns each containing
floating point values generated using ``numpy.random.randn()``.

.. ipython:: python
   :suppress:

   df = pd.DataFrame(np.random.randn(8, 4),
                     index=dates, columns=['A', 'B', 'C', 'D'])
   df2 = df.copy()


Duplicate data
--------------

.. _indexing.duplicate:

If you want to identify and remove duplicate rows in a DataFrame,  there are
two methods that will help: ``duplicated`` and ``drop_duplicates``. Each
takes as an argument the columns to use to identify duplicated rows.

* ``duplicated`` returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.
* ``drop_duplicates`` removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but
each method has a ``keep`` parameter to specify targets to be kept.

* ``keep='first'`` (default): mark / drop duplicates except for the first occurrence.
* ``keep='last'``: mark / drop duplicates except for the last occurrence.
* ``keep=False``: mark  / drop all duplicates.

.. ipython:: python

   df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
                       'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
                       'c': np.random.randn(7)})
   df2
   df2.duplicated('a')
   df2.duplicated('a', keep='last')
   df2.duplicated('a', keep=False)
   df2.drop_duplicates('a')
   df2.drop_duplicates('a', keep='last')
   df2.drop_duplicates('a', keep=False)

Also, you can pass a list of columns to identify duplications.

.. ipython:: python

   df2.duplicated(['a', 'b'])
   df2.drop_duplicates(['a', 'b'])

To drop duplicates by index value, use ``Index.duplicated`` then perform slicing.
The same set of options are available for the ``keep`` parameter.

.. ipython:: python

   df3 = pd.DataFrame({'a': np.arange(6),
                       'b': np.random.randn(6)},
                      index=['a', 'a', 'b', 'c', 'b', 'a'])
   df3
   df3.index.duplicated()
   df3[~df3.index.duplicated()]
   df3[~df3.index.duplicated(keep='last')]
   df3[~df3.index.duplicated(keep=False)]

.. _indexing.dictionarylike:

Dictionary-like :meth:`~pandas.DataFrame.get` method
----------------------------------------------------

Each of Series or DataFrame have a ``get`` method which can return a
default value.

.. ipython:: python

   s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
   s.get('a')  # equivalent to s['a']
   s.get('x', default=-1)

.. _indexing.lookup:

Looking up values by index/column labels
----------------------------------------

Sometimes you want to extract a set of values given a sequence of row labels
and column labels, this can be achieved by ``pandas.factorize``  and NumPy indexing.
For instance:

.. ipython:: python

    df = pd.DataFrame({'col': ["A", "A", "B", "B"],
                       'A': [80, 23, np.nan, 22],
                       'B': [80, 55, 76, 67]})
    df
    idx, cols = pd.factorize(df['col'])
    df.reindex(cols, axis=1).to_numpy()[np.arange(len(df)), idx]

Formerly this could be achieved with the dedicated ``DataFrame.lookup`` method
which was deprecated in version 1.2.0.

.. _indexing.class:

Index objects
-------------

The pandas :class:`~pandas.Index` class and its subclasses can be viewed as
implementing an *ordered multiset*. Duplicates are allowed. However, if you try
to convert an :class:`~pandas.Index` object with duplicate entries into a
``set``, an exception will be raised.

:class:`~pandas.Index` also provides the infrastructure necessary for
lookups, data alignment, and reindexing. The easiest way to create an
:class:`~pandas.Index` directly is to pass a ``list`` or other sequence to
:class:`~pandas.Index`:

.. ipython:: python

   index = pd.Index(['e', 'd', 'a', 'b'])
   index
   'd' in index

You can also pass a ``name`` to be stored in the index:


.. ipython:: python

   index = pd.Index(['e', 'd', 'a', 'b'], name='something')
   index.name

The name, if set, will be shown in the console display:

.. ipython:: python

   index = pd.Index(list(range(5)), name='rows')
   columns = pd.Index(['A', 'B', 'C'], name='cols')
   df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)
   df
   df['A']

.. _indexing.set_metadata:

Setting metadata
~~~~~~~~~~~~~~~~

Indexes are "mostly immutable", but it is possible to set and change their
``name`` attribute. You can use the ``rename``, ``set_names`` to set these attributes
directly, and they default to returning a copy.

See :ref:`Advanced Indexing <advanced>` for usage of MultiIndexes.

.. ipython:: python

  ind = pd.Index([1, 2, 3])
  ind.rename("apple")
  ind
  ind.set_names(["apple"], inplace=True)
  ind.name = "bob"
  ind

``set_names``, ``set_levels``, and ``set_codes`` also take an optional
``level`` argument

.. ipython:: python

  index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
  index
  index.levels[1]
  index.set_levels(["a", "b"], level=1)

.. _indexing.set_ops:

Set operations on Index objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The two main operations are ``union`` and ``intersection``.
Difference is provided via the ``.difference()`` method.

.. ipython:: python

   a = pd.Index(['c', 'b', 'a'])
   b = pd.Index(['c', 'e', 'd'])
   a.difference(b)

Also available is the ``symmetric_difference`` operation, which returns elements
that appear in either ``idx1`` or ``idx2``, but not in both. This is
equivalent to the Index created by ``idx1.difference(idx2).union(idx2.difference(idx1))``,
with duplicates dropped.

.. ipython:: python

   idx1 = pd.Index([1, 2, 3, 4])
   idx2 = pd.Index([2, 3, 4, 5])
   idx1.symmetric_difference(idx2)

.. note::

   The resulting index from a set operation will be sorted in ascending order.

When performing :meth:`Index.union` between indexes with different dtypes, the indexes
must be cast to a common dtype. Typically, though not always, this is object dtype. The
exception is when performing a union between integer and float data. In this case, the
integer values are converted to float

.. ipython:: python

   idx1 = pd.Index([0, 1, 2])
   idx2 = pd.Index([0.5, 1.5])
   idx1.union(idx2)

.. _indexing.missing:

Missing values
~~~~~~~~~~~~~~

.. important::

   Even though ``Index`` can hold missing values (``NaN``), it should be avoided
   if you do not want any unexpected results. For example, some operations
   exclude missing values implicitly.

``Index.fillna`` fills missing values with specified scalar value.

.. ipython:: python

   idx1 = pd.Index([1, np.nan, 3, 4])
   idx1
   idx1.fillna(2)

   idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'),
                            pd.NaT,
                            pd.Timestamp('2011-01-03')])
   idx2
   idx2.fillna(pd.Timestamp('2011-01-02'))

Set / reset index
-----------------

Occasionally you will load or create a data set into a DataFrame and want to
add an index after you've already done so. There are a couple of different
ways.

.. _indexing.set_index:

Set an index
~~~~~~~~~~~~

DataFrame has a :meth:`~DataFrame.set_index` method which takes a column name
(for a regular ``Index``) or a list of column names (for a ``MultiIndex``).
To create a new, re-indexed DataFrame:

.. ipython:: python
   :suppress:

   data = pd.DataFrame({'a': ['bar', 'bar', 'foo', 'foo'],
                        'b': ['one', 'two', 'one', 'two'],
                        'c': ['z', 'y', 'x', 'w'],
                        'd': [1., 2., 3, 4]})

.. ipython:: python

   data
   indexed1 = data.set_index('c')
   indexed1
   indexed2 = data.set_index(['a', 'b'])
   indexed2

The ``append`` keyword option allow you to keep the existing index and append
the given columns to a MultiIndex:

.. ipython:: python

   frame = data.set_index('c', drop=False)
   frame = frame.set_index(['a', 'b'], append=True)
   frame

Other options in ``set_index`` allow you not drop the index columns or to add
the index in-place (without creating a new object):

.. ipython:: python

   data.set_index('c', drop=False)
   data.set_index(['a', 'b'], inplace=True)
   data

Reset the index
~~~~~~~~~~~~~~~

As a convenience, there is a new function on DataFrame called
:meth:`~DataFrame.reset_index` which transfers the index values into the
DataFrame's columns and sets a simple integer index.
This is the inverse operation of :meth:`~DataFrame.set_index`.


.. ipython:: python

   data
   data.reset_index()

The output is more similar to a SQL table or a record array. The names for the
columns derived from the index are the ones stored in the ``names`` attribute.

You can use the ``level`` keyword to remove only a portion of the index:

.. ipython:: python

   frame
   frame.reset_index(level=1)


``reset_index`` takes an optional parameter ``drop`` which if true simply
discards the index, instead of putting index values in the DataFrame's columns.

Adding an ad hoc index
~~~~~~~~~~~~~~~~~~~~~~

If you create an index yourself, you can just assign it to the ``index`` field:

.. code-block:: python

   data.index = index

.. _indexing.view_versus_copy:

Returning a view versus a copy
------------------------------

When setting values in a pandas object, care must be taken to avoid what is called
``chained indexing``. Here is an example.

.. ipython:: python

   dfmi = pd.DataFrame([list('abcd'),
                        list('efgh'),
                        list('ijkl'),
                        list('mnop')],
                       columns=pd.MultiIndex.from_product([['one', 'two'],
                                                           ['first', 'second']]))
   dfmi

Compare these two access methods:

.. ipython:: python

   dfmi['one']['second']

.. ipython:: python

   dfmi.loc[:, ('one', 'second')]

These both yield the same results, so which should you use? It is instructive to understand the order
of operations on these and why method 2 (``.loc``) is much preferred over method 1 (chained ``[]``).

``dfmi['one']`` selects the first level of the columns and returns a DataFrame that is singly-indexed.
Then another Python operation ``dfmi_with_one['second']`` selects the series indexed by ``'second'``.
This is indicated by the variable ``dfmi_with_one`` because pandas sees these operations as separate events.
e.g. separate calls to ``__getitem__``, so it has to treat them as linear operations, they happen one after another.

Contrast this to ``df.loc[:,('one','second')]`` which passes a nested tuple of ``(slice(None),('one','second'))`` to a single call to
``__getitem__``. This allows pandas to deal with this as a single entity. Furthermore this order of operations *can* be significantly
faster, and allows one to index *both* axes if so desired.

Why does assignment fail when using chained indexing?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The problem in the previous section is just a performance issue. What's up with
the ``SettingWithCopy`` warning? We don't **usually** throw warnings around when
you do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing has
inherently unpredictable results. To see this, think about how the Python
interpreter executes this code:

.. ipython:: python
    :suppress:

    value = None

.. code-block:: python

   dfmi.loc[:, ('one', 'second')] = value
   # becomes
   dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)

But this code is handled differently:

.. code-block:: python

   dfmi['one']['second'] = value
   # becomes
   dfmi.__getitem__('one').__setitem__('second', value)

See that ``__getitem__`` in there? Outside of simple cases, it's very hard to
predict whether it will return a view or a copy (it depends on the memory layout
of the array, about which pandas makes no guarantees), and therefore whether
the ``__setitem__`` will modify ``dfmi`` or a temporary object that gets thrown
out immediately afterward. **That's** what ``SettingWithCopy`` is warning you
about!

.. note:: You may be wondering whether we should be concerned about the ``loc``
   property in the first example. But ``dfmi.loc`` is guaranteed to be ``dfmi``
   itself with modified indexing behavior, so ``dfmi.loc.__getitem__`` /
   ``dfmi.loc.__setitem__`` operate on ``dfmi`` directly. Of course,
   ``dfmi.loc.__getitem__(idx)`` may be a view or a copy of ``dfmi``.

Sometimes a ``SettingWithCopy`` warning will arise at times when there's no
obvious chained indexing going on. **These** are the bugs that
``SettingWithCopy`` is designed to catch! pandas is probably trying to warn you
that you've done this:

.. code-block:: python

   def do_something(df):
       foo = df[['bar', 'baz']]  # Is foo a view? A copy? Nobody knows!
       # ... many lines here ...
       # We don't know whether this will modify df or not!
       foo['quux'] = value
       return foo

Yikes!

.. _indexing.evaluation_order:

Evaluation order matters
~~~~~~~~~~~~~~~~~~~~~~~~

When you use chained indexing, the order and type of the indexing operation
partially determine whether the result is a slice into the original object, or
a copy of the slice.

pandas has the ``SettingWithCopyWarning`` because assigning to a copy of a
slice is frequently not intentional, but a mistake caused by chained indexing
returning a copy where a slice was expected.

If you would like pandas to be more or less trusting about assignment to a
chained indexing expression, you can set the :ref:`option <options>`
``mode.chained_assignment`` to one of these values:

* ``'warn'``, the default, means a ``SettingWithCopyWarning`` is printed.
* ``'raise'`` means pandas will raise a ``SettingWithCopyError``
  you have to deal with.
* ``None`` will suppress the warnings entirely.

.. ipython:: python
   :okwarning:

   dfb = pd.DataFrame({'a': ['one', 'one', 'two',
                             'three', 'two', 'one', 'six'],
                       'c': np.arange(7)})

   # This will show the SettingWithCopyWarning
   # but the frame values will be set
   dfb['c'][dfb['a'].str.startswith('o')] = 42

This however is operating on a copy and will not work.

::

   >>> pd.set_option('mode.chained_assignment','warn')
   >>> dfb[dfb['a'].str.startswith('o')]['c'] = 42
   Traceback (most recent call last)
        ...
   SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_index,col_indexer] = value instead

A chained assignment can also crop up in setting in a mixed dtype frame.

.. note::

   These setting rules apply to all of ``.loc/.iloc``.

The following is the recommended access method using ``.loc`` for multiple items (using ``mask``) and a single item using a fixed index:

.. ipython:: python

   dfc = pd.DataFrame({'a': ['one', 'one', 'two',
                             'three', 'two', 'one', 'six'],
                       'c': np.arange(7)})
   dfd = dfc.copy()
   # Setting multiple items using a mask
   mask = dfd['a'].str.startswith('o')
   dfd.loc[mask, 'c'] = 42
   dfd

   # Setting a single item
   dfd = dfc.copy()
   dfd.loc[2, 'a'] = 11
   dfd

The following *can* work at times, but it is not guaranteed to, and therefore should be avoided:

.. ipython:: python
   :okwarning:

   dfd = dfc.copy()
   dfd['a'][2] = 111
   dfd

Last, the subsequent example will **not** work at all, and so should be avoided:

::

   >>> pd.set_option('mode.chained_assignment','raise')
   >>> dfd.loc[0]['a'] = 1111
   Traceback (most recent call last)
        ...
   SettingWithCopyError:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_index,col_indexer] = value instead

.. warning::

   The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid
   assignment. There may be false positives; situations where a chained assignment is inadvertently
   reported.