File: merging.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (1513 lines) | stat: -rw-r--r-- 45,542 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
.. _merging:

{{ header }}

.. ipython:: python
   :suppress:

   from matplotlib import pyplot as plt
   import pandas.util._doctools as doctools

   p = doctools.TablePlotter()


************************************
Merge, join, concatenate and compare
************************************

pandas provides various facilities for easily combining together Series or
DataFrame with various kinds of set logic for the indexes
and relational algebra functionality in the case of join / merge-type
operations.

In addition, pandas also provides utilities to compare two Series or DataFrame
and summarize their differences.

.. _merging.concat:

Concatenating objects
---------------------

The :func:`~pandas.concat` function (in the main pandas namespace) does all of
the heavy lifting of performing concatenation operations along an axis while
performing optional set logic (union or intersection) of the indexes (if any) on
the other axes. Note that I say "if any" because there is only a single possible
axis of concatenation for Series.

Before diving into all of the details of ``concat`` and what it can do, here is
a simple example:

.. ipython:: python

   df1 = pd.DataFrame(
       {
           "A": ["A0", "A1", "A2", "A3"],
           "B": ["B0", "B1", "B2", "B3"],
           "C": ["C0", "C1", "C2", "C3"],
           "D": ["D0", "D1", "D2", "D3"],
       },
       index=[0, 1, 2, 3],
   )

   df2 = pd.DataFrame(
       {
           "A": ["A4", "A5", "A6", "A7"],
           "B": ["B4", "B5", "B6", "B7"],
           "C": ["C4", "C5", "C6", "C7"],
           "D": ["D4", "D5", "D6", "D7"],
       },
       index=[4, 5, 6, 7],
   )

   df3 = pd.DataFrame(
       {
           "A": ["A8", "A9", "A10", "A11"],
           "B": ["B8", "B9", "B10", "B11"],
           "C": ["C8", "C9", "C10", "C11"],
           "D": ["D8", "D9", "D10", "D11"],
       },
       index=[8, 9, 10, 11],
   )

   frames = [df1, df2, df3]
   result = pd.concat(frames)

.. ipython:: python
   :suppress:

   @savefig merging_concat_basic.png
   p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True);
   plt.close("all");

Like its sibling function on ndarrays, ``numpy.concatenate``, ``pandas.concat``
takes a list or dict of homogeneously-typed objects and concatenates them with
some configurable handling of "what to do with the other axes":

::

    pd.concat(
        objs,
        axis=0,
        join="outer",
        ignore_index=False,
        keys=None,
        levels=None,
        names=None,
        verify_integrity=False,
        copy=True,
    )

* ``objs`` : a sequence or mapping of Series or DataFrame objects. If a
  dict is passed, the sorted keys will be used as the ``keys`` argument, unless
  it is passed, in which case the values will be selected (see below). Any None
  objects will be dropped silently unless they are all None in which case a
  ValueError will be raised.
* ``axis`` : {0, 1, ...}, default 0. The axis to concatenate along.
* ``join`` : {'inner', 'outer'}, default 'outer'. How to handle indexes on
  other axis(es). Outer for union and inner for intersection.
* ``ignore_index`` : boolean, default False. If True, do not use the index
  values on the concatenation axis. The resulting axis will be labeled 0, ...,
  n - 1. This is useful if you are concatenating objects where the
  concatenation axis does not have meaningful indexing information. Note
  the index values on the other axes are still respected in the join.
* ``keys`` : sequence, default None. Construct hierarchical index using the
  passed keys as the outermost level. If multiple levels passed, should
  contain tuples.
* ``levels`` : list of sequences, default None. Specific levels (unique values)
  to use for constructing a MultiIndex. Otherwise they will be inferred from the
  keys.
* ``names`` : list, default None. Names for the levels in the resulting
  hierarchical index.
* ``verify_integrity`` : boolean, default False. Check whether the new
  concatenated axis contains duplicates. This can be very expensive relative
  to the actual data concatenation.
* ``copy`` : boolean, default True. If False, do not copy data unnecessarily.

Without a little bit of context many of these arguments don't make much sense.
Let's revisit the above example. Suppose we wanted to associate specific keys
with each of the pieces of the chopped up DataFrame. We can do this using the
``keys`` argument:

.. ipython:: python

   result = pd.concat(frames, keys=["x", "y", "z"])

.. ipython:: python
   :suppress:

   @savefig merging_concat_keys.png
   p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True)
   plt.close("all");

As you can see (if you've read the rest of the documentation), the resulting
object's index has a :ref:`hierarchical index <advanced.hierarchical>`. This
means that we can now select out each chunk by key:

.. ipython:: python

   result.loc["y"]

It's not a stretch to see how this can be very useful. More detail on this
functionality below.

.. note::
   It is worth noting that :func:`~pandas.concat` (and therefore
   :func:`~pandas.append`) makes a full copy of the data, and that constantly
   reusing this function can create a significant performance hit. If you need
   to use the operation over several datasets, use a list comprehension.

::

   frames = [ process_your_file(f) for f in files ]
   result = pd.concat(frames)

.. note::

   When concatenating DataFrames with named axes, pandas will attempt to preserve
   these index/column names whenever possible. In the case where all inputs share a
   common name, this name will be assigned to the result. When the input names do
   not all agree, the result will be unnamed. The same is true for :class:`MultiIndex`,
   but the logic is applied separately on a level-by-level basis.


Set logic on the other axes
~~~~~~~~~~~~~~~~~~~~~~~~~~~

When gluing together multiple DataFrames, you have a choice of how to handle
the other axes (other than the one being concatenated). This can be done in
the following two ways:

* Take the union of them all, ``join='outer'``. This is the default
  option as it results in zero information loss.
* Take the intersection, ``join='inner'``.

Here is an example of each of these methods. First, the default ``join='outer'``
behavior:

.. ipython:: python

   df4 = pd.DataFrame(
       {
           "B": ["B2", "B3", "B6", "B7"],
           "D": ["D2", "D3", "D6", "D7"],
           "F": ["F2", "F3", "F6", "F7"],
       },
       index=[2, 3, 6, 7],
   )
   result = pd.concat([df1, df4], axis=1)


.. ipython:: python
   :suppress:

   @savefig merging_concat_axis1.png
   p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
   plt.close("all");

Here is the same thing with ``join='inner'``:

.. ipython:: python

   result = pd.concat([df1, df4], axis=1, join="inner")

.. ipython:: python
   :suppress:

   @savefig merging_concat_axis1_inner.png
   p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
   plt.close("all");

Lastly, suppose we just wanted to reuse the *exact index* from the original
DataFrame:

.. ipython:: python

   result = pd.concat([df1, df4], axis=1).reindex(df1.index)

Similarly, we could index before the concatenation:

.. ipython:: python

    pd.concat([df1, df4.reindex(df1.index)], axis=1)

.. ipython:: python
   :suppress:

   @savefig merging_concat_axis1_join_axes.png
   p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
   plt.close("all");

.. _merging.ignore_index:

Ignoring indexes on the concatenation axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For ``DataFrame`` objects which don't have a meaningful index, you may wish
to append them and ignore the fact that they may have overlapping indexes. To
do this, use the ``ignore_index`` argument:

.. ipython:: python

   result = pd.concat([df1, df4], ignore_index=True, sort=False)

.. ipython:: python
   :suppress:

   @savefig merging_concat_ignore_index.png
   p.plot([df1, df4], result, labels=["df1", "df4"], vertical=True);
   plt.close("all");

.. _merging.mixed_ndims:

Concatenating with mixed ndims
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can concatenate a mix of ``Series`` and ``DataFrame`` objects. The
``Series`` will be transformed to ``DataFrame`` with the column name as
the name of the ``Series``.

.. ipython:: python

   s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")
   result = pd.concat([df1, s1], axis=1)

.. ipython:: python
   :suppress:

   @savefig merging_concat_mixed_ndim.png
   p.plot([df1, s1], result, labels=["df1", "s1"], vertical=False);
   plt.close("all");

.. note::

   Since we're concatenating a ``Series`` to a ``DataFrame``, we could have
   achieved the same result with :meth:`DataFrame.assign`. To concatenate an
   arbitrary number of pandas objects (``DataFrame`` or ``Series``), use
   ``concat``.

If unnamed ``Series`` are passed they will be numbered consecutively.

.. ipython:: python

   s2 = pd.Series(["_0", "_1", "_2", "_3"])
   result = pd.concat([df1, s2, s2, s2], axis=1)

.. ipython:: python
   :suppress:

   @savefig merging_concat_unnamed_series.png
   p.plot([df1, s2], result, labels=["df1", "s2"], vertical=False);
   plt.close("all");

Passing ``ignore_index=True`` will drop all name references.

.. ipython:: python

   result = pd.concat([df1, s1], axis=1, ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_concat_series_ignore_index.png
   p.plot([df1, s1], result, labels=["df1", "s1"], vertical=False);
   plt.close("all");

More concatenating with group keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A fairly common use of the ``keys`` argument is to override the column names
when creating a new ``DataFrame`` based on existing ``Series``.
Notice how the default behaviour consists on letting the resulting ``DataFrame``
inherit the parent ``Series``' name, when these existed.

.. ipython:: python

   s3 = pd.Series([0, 1, 2, 3], name="foo")
   s4 = pd.Series([0, 1, 2, 3])
   s5 = pd.Series([0, 1, 4, 5])

   pd.concat([s3, s4, s5], axis=1)

Through the ``keys`` argument we can override the existing column names.

.. ipython:: python

   pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])

Let's consider a variation of the very first example presented:

.. ipython:: python

   result = pd.concat(frames, keys=["x", "y", "z"])

.. ipython:: python
   :suppress:

   @savefig merging_concat_group_keys2.png
   p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True);
   plt.close("all");

You can also pass a dict to ``concat`` in which case the dict keys will be used
for the ``keys`` argument (unless other keys are specified):

.. ipython:: python

   pieces = {"x": df1, "y": df2, "z": df3}
   result = pd.concat(pieces)

.. ipython:: python
   :suppress:

   @savefig merging_concat_dict.png
   p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
   plt.close("all");

.. ipython:: python

   result = pd.concat(pieces, keys=["z", "y"])

.. ipython:: python
   :suppress:

   @savefig merging_concat_dict_keys.png
   p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
   plt.close("all");

The MultiIndex created has levels that are constructed from the passed keys and
the index of the ``DataFrame`` pieces:

.. ipython:: python

   result.index.levels

If you wish to specify other levels (as will occasionally be the case), you can
do so using the ``levels`` argument:

.. ipython:: python

   result = pd.concat(
       pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
   )

.. ipython:: python
   :suppress:

   @savefig merging_concat_dict_keys_names.png
   p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
   plt.close("all");

.. ipython:: python

   result.index.levels

This is fairly esoteric, but it is actually necessary for implementing things
like GroupBy where the order of a categorical variable is meaningful.

.. _merging.append.row:

Appending rows to a DataFrame
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you have a series that you want to append as a single row to a ``DataFrame``, you can convert the row into a
``DataFrame`` and use ``concat``

.. ipython:: python

   s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])
   result = pd.concat([df1, s2.to_frame().T], ignore_index=True)

.. ipython:: python
   :suppress:

   @savefig merging_append_series_as_row.png
   p.plot([df1, s2], result, labels=["df1", "s2"], vertical=True);
   plt.close("all");

You should use ``ignore_index`` with this method to instruct DataFrame to
discard its index. If you wish to preserve the index, you should construct an
appropriately-indexed DataFrame and append or concatenate those objects.

.. _merging.join:

Database-style DataFrame or named Series joining/merging
--------------------------------------------------------

pandas has full-featured, **high performance** in-memory join operations
idiomatically very similar to relational databases like SQL. These methods
perform significantly better (in some cases well over an order of magnitude
better) than other open source implementations (like ``base::merge.data.frame``
in R). The reason for this is careful algorithmic design and the internal layout
of the data in ``DataFrame``.

See the :ref:`cookbook<cookbook.merge>` for some advanced strategies.

Users who are familiar with SQL but new to pandas might be interested in a
:ref:`comparison with SQL<compare_with_sql.join>`.

pandas provides a single function, :func:`~pandas.merge`, as the entry point for
all standard database join operations between ``DataFrame`` or named ``Series`` objects:

::

    pd.merge(
        left,
        right,
        how="inner",
        on=None,
        left_on=None,
        right_on=None,
        left_index=False,
        right_index=False,
        sort=True,
        suffixes=("_x", "_y"),
        copy=True,
        indicator=False,
        validate=None,
    )

* ``left``: A DataFrame or named Series object.
* ``right``: Another DataFrame or named Series object.
* ``on``: Column or index level names to join on. Must be found in both the left
  and right DataFrame and/or Series objects. If not passed and ``left_index`` and
  ``right_index`` are ``False``, the intersection of the columns in the
  DataFrames and/or Series will be inferred to be the join keys.
* ``left_on``: Columns or index levels from the left DataFrame or Series to use as
  keys. Can either be column names, index level names, or arrays with length
  equal to the length of the DataFrame or Series.
* ``right_on``: Columns or index levels from the right DataFrame or Series to use as
  keys. Can either be column names, index level names, or arrays with length
  equal to the length of the DataFrame or Series.
* ``left_index``: If ``True``, use the index (row labels) from the left
  DataFrame or Series as its join key(s). In the case of a DataFrame or Series with a MultiIndex
  (hierarchical), the number of levels must match the number of join keys
  from the right DataFrame or Series.
* ``right_index``: Same usage as ``left_index`` for the right DataFrame or Series
* ``how``: One of ``'left'``, ``'right'``, ``'outer'``, ``'inner'``, ``'cross'``. Defaults
  to ``inner``. See below for more detailed description of each method.
* ``sort``: Sort the result DataFrame by the join keys in lexicographical
  order. Defaults to ``True``, setting to ``False`` will improve performance
  substantially in many cases.
* ``suffixes``: A tuple of string suffixes to apply to overlapping
  columns. Defaults to ``('_x', '_y')``.
* ``copy``: Always copy data (default ``True``) from the passed DataFrame or named Series
  objects, even when reindexing is not necessary. Cannot be avoided in many
  cases but may improve performance / memory usage. The cases where copying
  can be avoided are somewhat pathological but this option is provided
  nonetheless.
* ``indicator``: Add a column to the output DataFrame called ``_merge``
  with information on the source of each row. ``_merge`` is Categorical-type
  and takes on a value of ``left_only`` for observations whose merge key
  only appears in ``'left'`` DataFrame or Series, ``right_only`` for observations whose
  merge key only appears in ``'right'`` DataFrame or Series, and ``both`` if the
  observation's merge key is found in both.

* ``validate`` : string, default None.
  If specified, checks if merge is of specified type.

    * "one_to_one" or "1:1": checks if merge keys are unique in both
      left and right datasets.
    * "one_to_many" or "1:m": checks if merge keys are unique in left
      dataset.
    * "many_to_one" or "m:1": checks if merge keys are unique in right
      dataset.
    * "many_to_many" or "m:m": allowed, but does not result in checks.

.. note::

   Support for specifying index levels as the ``on``, ``left_on``, and
   ``right_on`` parameters was added in version 0.23.0.
   Support for merging named ``Series`` objects was added in version 0.24.0.

The return type will be the same as ``left``. If ``left`` is a ``DataFrame`` or named ``Series``
and ``right`` is a subclass of ``DataFrame``, the return type will still be ``DataFrame``.

``merge`` is a function in the pandas namespace, and it is also available as a
``DataFrame`` instance method :meth:`~DataFrame.merge`, with the calling
``DataFrame`` being implicitly considered the left object in the join.

The related :meth:`~DataFrame.join` method, uses ``merge`` internally for the
index-on-index (by default) and column(s)-on-index join. If you are joining on
index only, you may wish to use ``DataFrame.join`` to save yourself some typing.

Brief primer on merge methods (relational algebra)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Experienced users of relational databases like SQL will be familiar with the
terminology used to describe join operations between two SQL-table like
structures (``DataFrame`` objects). There are several cases to consider which
are very important to understand:

* **one-to-one** joins: for example when joining two ``DataFrame`` objects on
  their indexes (which must contain unique values).
* **many-to-one** joins: for example when joining an index (unique) to one or
  more columns in a different ``DataFrame``.
* **many-to-many** joins: joining columns on columns.

.. note::

   When joining columns on columns (potentially a many-to-many join), any
   indexes on the passed ``DataFrame`` objects **will be discarded**.


It is worth spending some time understanding the result of the **many-to-many**
join case. In SQL / standard relational algebra, if a key combination appears
more than once in both tables, the resulting table will have the **Cartesian
product** of the associated data. Here is a very basic example with one unique
key combination:

.. ipython:: python

   left = pd.DataFrame(
       {
           "key": ["K0", "K1", "K2", "K3"],
           "A": ["A0", "A1", "A2", "A3"],
           "B": ["B0", "B1", "B2", "B3"],
       }
   )

   right = pd.DataFrame(
       {
           "key": ["K0", "K1", "K2", "K3"],
           "C": ["C0", "C1", "C2", "C3"],
           "D": ["D0", "D1", "D2", "D3"],
       }
   )
   result = pd.merge(left, right, on="key")

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

Here is a more complicated example with multiple join keys. Only the keys
appearing in ``left`` and ``right`` are present (the intersection), since
``how='inner'`` by default.

.. ipython:: python

   left = pd.DataFrame(
       {
           "key1": ["K0", "K0", "K1", "K2"],
           "key2": ["K0", "K1", "K0", "K1"],
           "A": ["A0", "A1", "A2", "A3"],
           "B": ["B0", "B1", "B2", "B3"],
       }
   )

   right = pd.DataFrame(
       {
           "key1": ["K0", "K1", "K1", "K2"],
           "key2": ["K0", "K0", "K0", "K0"],
           "C": ["C0", "C1", "C2", "C3"],
           "D": ["D0", "D1", "D2", "D3"],
       }
   )

   result = pd.merge(left, right, on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_multiple.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

The ``how`` argument to ``merge`` specifies how to determine which keys are to
be included in the resulting table. If a key combination **does not appear** in
either the left or right tables, the values in the joined table will be
``NA``. Here is a summary of the ``how`` options and their SQL equivalent names:

.. csv-table::
    :header: "Merge method", "SQL Join Name", "Description"
    :widths: 20, 20, 60

    ``left``, ``LEFT OUTER JOIN``, Use keys from left frame only
    ``right``, ``RIGHT OUTER JOIN``, Use keys from right frame only
    ``outer``, ``FULL OUTER JOIN``, Use union of keys from both frames
    ``inner``, ``INNER JOIN``, Use intersection of keys from both frames
    ``cross``, ``CROSS JOIN``, Create the cartesian product of rows of both frames

.. ipython:: python

   result = pd.merge(left, right, how="left", on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_left.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = pd.merge(left, right, how="right", on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_right.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);

.. ipython:: python

   result = pd.merge(left, right, how="outer", on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_outer.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = pd.merge(left, right, how="inner", on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_inner.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = pd.merge(left, right, how="cross")

.. ipython:: python
   :suppress:

   @savefig merging_merge_cross.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

You can merge a mult-indexed Series and a DataFrame, if the names of
the MultiIndex correspond to the columns from the DataFrame. Transform
the Series to a DataFrame using :meth:`Series.reset_index` before merging,
as shown in the following example.

.. ipython:: python

   df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})
   df

   ser = pd.Series(
       ["a", "b", "c", "d", "e", "f"],
       index=pd.MultiIndex.from_arrays(
           [["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
       ),
   )
   ser

   pd.merge(df, ser.reset_index(), on=["Let", "Num"])


Here is another example with duplicate join keys in DataFrames:

.. ipython:: python

   left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})

   right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})

   result = pd.merge(left, right, on="B", how="outer")

.. ipython:: python
   :suppress:

   @savefig merging_merge_on_key_dup.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");


.. warning::

  Joining / merging on duplicate keys can cause a returned frame that is the multiplication of the row dimensions, which may result in memory overflow. It is the user' s responsibility to manage duplicate values in keys before joining large DataFrames.

.. _merging.validation:

Checking for duplicate keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Users can use the ``validate`` argument to automatically check whether there
are unexpected duplicates in their merge keys. Key uniqueness is checked before
merge operations and so should protect against memory overflows. Checking key
uniqueness is also a good way to ensure user data structures are as expected.

In the following example, there are duplicate values of ``B`` in the right
``DataFrame``. As this is not a one-to-one merge -- as specified in the
``validate`` argument -- an exception will be raised.


.. ipython:: python

  left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})
  right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})

.. code-block:: ipython

  In [53]: result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
  ...
  MergeError: Merge keys are not unique in right dataset; not a one-to-one merge

If the user is aware of the duplicates in the right ``DataFrame`` but wants to
ensure there are no duplicates in the left DataFrame, one can use the
``validate='one_to_many'`` argument instead, which will not raise an exception.

.. ipython:: python

   pd.merge(left, right, on="B", how="outer", validate="one_to_many")


.. _merging.indicator:

The merge indicator
~~~~~~~~~~~~~~~~~~~

:func:`~pandas.merge` accepts the argument ``indicator``. If ``True``, a
Categorical-type column called ``_merge`` will be added to the output object
that takes on values:

  ===================================   ================
  Observation Origin                    ``_merge`` value
  ===================================   ================
  Merge key only in ``'left'`` frame    ``left_only``
  Merge key only in ``'right'`` frame   ``right_only``
  Merge key in both frames              ``both``
  ===================================   ================

.. ipython:: python

   df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})
   df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})
   pd.merge(df1, df2, on="col1", how="outer", indicator=True)

The ``indicator`` argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column.

.. ipython:: python

   pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")


.. _merging.dtypes:

Merge dtypes
~~~~~~~~~~~~

Merging will preserve the dtype of the join keys.

.. ipython:: python

   left = pd.DataFrame({"key": [1], "v1": [10]})
   left
   right = pd.DataFrame({"key": [1, 2], "v1": [20, 30]})
   right

We are able to preserve the join keys:

.. ipython:: python

   pd.merge(left, right, how="outer")
   pd.merge(left, right, how="outer").dtypes

Of course if you have missing values that are introduced, then the
resulting dtype will be upcast.

.. ipython:: python

   pd.merge(left, right, how="outer", on="key")
   pd.merge(left, right, how="outer", on="key").dtypes

Merging will preserve ``category`` dtypes of the mergands. See also the section on :ref:`categoricals <categorical.merge>`.

The left frame.

.. ipython:: python

   from pandas.api.types import CategoricalDtype

   X = pd.Series(np.random.choice(["foo", "bar"], size=(10,)))
   X = X.astype(CategoricalDtype(categories=["foo", "bar"]))

   left = pd.DataFrame(
       {"X": X, "Y": np.random.choice(["one", "two", "three"], size=(10,))}
   )
   left
   left.dtypes

The right frame.

.. ipython:: python

   right = pd.DataFrame(
       {
           "X": pd.Series(["foo", "bar"], dtype=CategoricalDtype(["foo", "bar"])),
           "Z": [1, 2],
       }
   )
   right
   right.dtypes

The merged result:

.. ipython:: python

   result = pd.merge(left, right, how="outer")
   result
   result.dtypes

.. note::

   The category dtypes must be *exactly* the same, meaning the same categories and the ordered attribute.
   Otherwise the result will coerce to the categories' dtype.

.. note::

   Merging on ``category`` dtypes that are the same can be quite performant compared to ``object`` dtype merging.

.. _merging.join.index:

Joining on index
~~~~~~~~~~~~~~~~

:meth:`DataFrame.join` is a convenient method for combining the columns of two
potentially differently-indexed ``DataFrames`` into a single result
``DataFrame``. Here is a very basic example:

.. ipython:: python

   left = pd.DataFrame(
       {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
   )

   right = pd.DataFrame(
       {"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
   )

   result = left.join(right)

.. ipython:: python
   :suppress:

   @savefig merging_join.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = left.join(right, how="outer")

.. ipython:: python
   :suppress:

   @savefig merging_join_outer.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

The same as above, but with ``how='inner'``.

.. ipython:: python

   result = left.join(right, how="inner")

.. ipython:: python
   :suppress:

   @savefig merging_join_inner.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

The data alignment here is on the indexes (row labels). This same behavior can
be achieved using ``merge`` plus additional arguments instructing it to use the
indexes:

.. ipython:: python

   result = pd.merge(left, right, left_index=True, right_index=True, how="outer")

.. ipython:: python
   :suppress:

   @savefig merging_merge_index_outer.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = pd.merge(left, right, left_index=True, right_index=True, how="inner")

.. ipython:: python
   :suppress:

   @savefig merging_merge_index_inner.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

Joining key columns on an index
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:meth:`~DataFrame.join` takes an optional ``on`` argument which may be a column
or multiple column names, which specifies that the passed ``DataFrame`` is to be
aligned on that column in the ``DataFrame``. These two function calls are
completely equivalent:

::

    left.join(right, on=key_or_keys)
    pd.merge(
        left, right, left_on=key_or_keys, right_index=True, how="left", sort=False
    )

Obviously you can choose whichever form you find more convenient. For
many-to-one joins (where one of the ``DataFrame``'s is already indexed by the
join key), using ``join`` may be more convenient. Here is a simple example:

.. ipython:: python

   left = pd.DataFrame(
       {
           "A": ["A0", "A1", "A2", "A3"],
           "B": ["B0", "B1", "B2", "B3"],
           "key": ["K0", "K1", "K0", "K1"],
       }
   )

   right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])

   result = left.join(right, on="key")

.. ipython:: python
   :suppress:

   @savefig merging_join_key_columns.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = pd.merge(
       left, right, left_on="key", right_index=True, how="left", sort=False
   )

.. ipython:: python
   :suppress:

   @savefig merging_merge_key_columns.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. _merging.multikey_join:

To join on multiple keys, the passed DataFrame must have a ``MultiIndex``:

.. ipython:: python

   left = pd.DataFrame(
       {
           "A": ["A0", "A1", "A2", "A3"],
           "B": ["B0", "B1", "B2", "B3"],
           "key1": ["K0", "K0", "K1", "K2"],
           "key2": ["K0", "K1", "K0", "K1"],
       }
   )

   index = pd.MultiIndex.from_tuples(
       [("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
   )
   right = pd.DataFrame(
       {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
   )

Now this can be joined by passing the two key column names:

.. ipython:: python

   result = left.join(right, on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merging_join_multikeys.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. _merging.df_inner_join:

The default for ``DataFrame.join`` is to perform a left join (essentially a
"VLOOKUP" operation, for Excel users), which uses only the keys found in the
calling DataFrame. Other join types, for example inner join, can be just as
easily performed:

.. ipython:: python

   result = left.join(right, on=["key1", "key2"], how="inner")

.. ipython:: python
   :suppress:

   @savefig merging_join_multikeys_inner.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

As you can see, this drops any rows where there was no match.

.. _merging.join_on_mi:

Joining a single Index to a MultiIndex
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can join a singly-indexed ``DataFrame`` with a level of a MultiIndexed ``DataFrame``.
The level will match on the name of the index of the singly-indexed frame against
a level name of the MultiIndexed frame.

..  ipython:: python

    left = pd.DataFrame(
        {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
        index=pd.Index(["K0", "K1", "K2"], name="key"),
    )

    index = pd.MultiIndex.from_tuples(
        [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
        names=["key", "Y"],
    )
    right = pd.DataFrame(
        {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
        index=index,
    )

    result = left.join(right, how="inner")


.. ipython:: python
   :suppress:

   @savefig merging_join_multiindex_inner.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

This is equivalent but less verbose and more memory efficient / faster than this.

..  ipython:: python

    result = pd.merge(
        left.reset_index(), right.reset_index(), on=["key"], how="inner"
    ).set_index(["key","Y"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_multiindex_alternative.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. _merging.join_with_two_multi_indexes:

Joining with two MultiIndexes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is supported in a limited way, provided that the index for the right
argument is completely used in the join, and is a subset of the indices in
the left argument, as in this example:

.. ipython:: python

   leftindex = pd.MultiIndex.from_product(
       [list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
   )
   left = pd.DataFrame({"v1": range(12)}, index=leftindex)
   left

   rightindex = pd.MultiIndex.from_product(
       [list("abc"), list("xy")], names=["abc", "xy"]
   )
   right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)
   right

   left.join(right, on=["abc", "xy"], how="inner")

If that condition is not satisfied, a join with two multi-indexes can be
done using the following code.

.. ipython:: python

   leftindex = pd.MultiIndex.from_tuples(
       [("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
   )
   left = pd.DataFrame(
       {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
   )

   rightindex = pd.MultiIndex.from_tuples(
       [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
   )
   right = pd.DataFrame(
       {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
   )

   result = pd.merge(
       left.reset_index(), right.reset_index(), on=["key"], how="inner"
   ).set_index(["key", "X", "Y"])

.. ipython:: python
   :suppress:

   @savefig merging_merge_two_multiindex.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. _merging.merge_on_columns_and_levels:

Merging on a combination of columns and index levels
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Strings passed as the ``on``, ``left_on``, and ``right_on`` parameters
may refer to either column names or index level names.  This enables merging
``DataFrame`` instances on a combination of index levels and columns without
resetting indexes.

.. ipython:: python

   left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")

   left = pd.DataFrame(
       {
           "A": ["A0", "A1", "A2", "A3"],
           "B": ["B0", "B1", "B2", "B3"],
           "key2": ["K0", "K1", "K0", "K1"],
       },
       index=left_index,
   )

   right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")

   right = pd.DataFrame(
       {
           "C": ["C0", "C1", "C2", "C3"],
           "D": ["D0", "D1", "D2", "D3"],
           "key2": ["K0", "K0", "K0", "K1"],
       },
       index=right_index,
   )

   result = left.merge(right, on=["key1", "key2"])

.. ipython:: python
   :suppress:

   @savefig merge_on_index_and_column.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. note::

   When DataFrames are merged on a string that matches an index level in both
   frames, the index level is preserved as an index level in the resulting
   DataFrame.

.. note::
   When DataFrames are merged using only some of the levels of a ``MultiIndex``,
   the extra levels will be dropped from the resulting merge. In order to
   preserve those levels, use ``reset_index`` on those level names to move
   those levels to columns prior to doing the merge.

.. note::

   If a string matches both a column name and an index level name, then a
   warning is issued and the column takes precedence. This will result in an
   ambiguity error in a future version.

Overlapping value columns
~~~~~~~~~~~~~~~~~~~~~~~~~

The merge ``suffixes`` argument takes a tuple of list of strings to append to
overlapping column names in the input ``DataFrame``\ s to disambiguate the result
columns:

.. ipython:: python

   left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})
   right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})

   result = pd.merge(left, right, on="k")

.. ipython:: python
   :suppress:

   @savefig merging_merge_overlapped.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. ipython:: python

   result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))

.. ipython:: python
   :suppress:

   @savefig merging_merge_overlapped_suffix.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

:meth:`DataFrame.join` has ``lsuffix`` and ``rsuffix`` arguments which behave
similarly.

.. ipython:: python

   left = left.set_index("k")
   right = right.set_index("k")
   result = left.join(right, lsuffix="_l", rsuffix="_r")

.. ipython:: python
   :suppress:

   @savefig merging_merge_overlapped_multi_suffix.png
   p.plot([left, right], result, labels=["left", "right"], vertical=False);
   plt.close("all");

.. _merging.multiple_join:

Joining multiple DataFrames
~~~~~~~~~~~~~~~~~~~~~~~~~~~

A list or tuple of ``DataFrames`` can also be passed to :meth:`~DataFrame.join`
to join them together on their indexes.

.. ipython:: python

   right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])
   result = left.join([right, right2])

.. ipython:: python
   :suppress:

   @savefig merging_join_multi_df.png
   p.plot(
       [left, right, right2],
       result,
       labels=["left", "right", "right2"],
       vertical=False,
   );
   plt.close("all");

.. _merging.combine_first.update:

Merging together values within Series or DataFrame columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Another fairly common situation is to have two like-indexed (or similarly
indexed) ``Series`` or ``DataFrame`` objects and wanting to "patch" values in
one object from values for matching indices in the other. Here is an example:

.. ipython:: python

   df1 = pd.DataFrame(
       [[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
   )
   df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])

For this, use the :meth:`~DataFrame.combine_first` method:

.. ipython:: python

   result = df1.combine_first(df2)

.. ipython:: python
   :suppress:

   @savefig merging_combine_first.png
   p.plot([df1, df2], result, labels=["df1", "df2"], vertical=False);
   plt.close("all");

Note that this method only takes values from the right ``DataFrame`` if they are
missing in the left ``DataFrame``. A related method, :meth:`~DataFrame.update`,
alters non-NA values in place:

.. ipython:: python
   :suppress:

   df1_copy = df1.copy()

.. ipython:: python

   df1.update(df2)

.. ipython:: python
   :suppress:

   @savefig merging_update.png
   p.plot([df1_copy, df2], df1, labels=["df1", "df2"], vertical=False);
   plt.close("all");

.. _merging.time_series:

Timeseries friendly merging
---------------------------

.. _merging.merge_ordered:

Merging ordered data
~~~~~~~~~~~~~~~~~~~~

A :func:`merge_ordered` function allows combining time series and other
ordered data. In particular it has an optional ``fill_method`` keyword to
fill/interpolate missing data:

.. ipython:: python

   left = pd.DataFrame(
       {"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
   )

   right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})

   pd.merge_ordered(left, right, fill_method="ffill", left_by="s")

.. _merging.merge_asof:

Merging asof
~~~~~~~~~~~~

A :func:`merge_asof` is similar to an ordered left-join except that we match on
nearest key rather than equal keys. For each row in the ``left`` ``DataFrame``,
we select the last row in the ``right`` ``DataFrame`` whose ``on`` key is less
than the left's key. Both DataFrames must be sorted by the key.

Optionally an asof merge can perform a group-wise merge. This matches the
``by`` key equally, in addition to the nearest match on the ``on`` key.

For example; we might have ``trades`` and ``quotes`` and we want to ``asof``
merge them.

.. ipython:: python

   trades = pd.DataFrame(
       {
           "time": pd.to_datetime(
               [
                   "20160525 13:30:00.023",
                   "20160525 13:30:00.038",
                   "20160525 13:30:00.048",
                   "20160525 13:30:00.048",
                   "20160525 13:30:00.048",
               ]
           ),
           "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
           "price": [51.95, 51.95, 720.77, 720.92, 98.00],
           "quantity": [75, 155, 100, 100, 100],
       },
       columns=["time", "ticker", "price", "quantity"],
   )

   quotes = pd.DataFrame(
       {
           "time": pd.to_datetime(
               [
                   "20160525 13:30:00.023",
                   "20160525 13:30:00.023",
                   "20160525 13:30:00.030",
                   "20160525 13:30:00.041",
                   "20160525 13:30:00.048",
                   "20160525 13:30:00.049",
                   "20160525 13:30:00.072",
                   "20160525 13:30:00.075",
               ]
           ),
           "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
           "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
           "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
       },
       columns=["time", "ticker", "bid", "ask"],
   )

.. ipython:: python

   trades
   quotes

By default we are taking the asof of the quotes.

.. ipython:: python

   pd.merge_asof(trades, quotes, on="time", by="ticker")

We only asof within ``2ms`` between the quote time and the trade time.

.. ipython:: python

   pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms"))

We only asof within ``10ms`` between the quote time and the trade time and we
exclude exact matches on time. Note that though we exclude the exact matches
(of the quotes), prior quotes **do** propagate to that point in time.

.. ipython:: python

   pd.merge_asof(
       trades,
       quotes,
       on="time",
       by="ticker",
       tolerance=pd.Timedelta("10ms"),
       allow_exact_matches=False,
   )

.. _merging.compare:

Comparing objects
-----------------

The :meth:`~Series.compare` and :meth:`~DataFrame.compare` methods allow you to
compare two DataFrame or Series, respectively, and summarize their differences.

This feature was added in :ref:`V1.1.0 <whatsnew_110.dataframe_or_series_comparing>`.

For example, you might want to compare two ``DataFrame`` and stack their differences
side by side.

.. ipython:: python

   df = pd.DataFrame(
       {
           "col1": ["a", "a", "b", "b", "a"],
           "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
           "col3": [1.0, 2.0, 3.0, 4.0, 5.0],
       },
       columns=["col1", "col2", "col3"],
   )
   df

.. ipython:: python

   df2 = df.copy()
   df2.loc[0, "col1"] = "c"
   df2.loc[2, "col3"] = 4.0
   df2

.. ipython:: python

   df.compare(df2)

By default, if two corresponding values are equal, they will be shown as ``NaN``.
Furthermore, if all values in an entire row / column, the row / column will be
omitted from the result. The remaining differences will be aligned on columns.

If you wish, you may choose to stack the differences on rows.

.. ipython:: python

   df.compare(df2, align_axis=0)

If you wish to keep all original rows and columns, set ``keep_shape`` argument
to ``True``.

.. ipython:: python

   df.compare(df2, keep_shape=True)

You may also keep all the original values even if they are equal.

.. ipython:: python

   df.compare(df2, keep_shape=True, keep_equal=True)