File: missing_data.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (947 lines) | stat: -rw-r--r-- 25,787 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
.. _missing_data:

{{ header }}

*************************
Working with missing data
*************************

In this section, we will discuss missing (also referred to as NA) values in
pandas.

.. note::

    The choice of using ``NaN`` internally to denote missing data was largely
    for simplicity and performance reasons.
    Starting from pandas 1.0, some optional data types start experimenting
    with a native ``NA`` scalar using a mask-based approach. See
    :ref:`here <missing_data.NA>` for more.

See the :ref:`cookbook<cookbook.missing_data>` for some advanced strategies.

Values considered "missing"
~~~~~~~~~~~~~~~~~~~~~~~~~~~

As data comes in many shapes and forms, pandas aims to be flexible with regard
to handling missing data. While ``NaN`` is the default missing value marker for
reasons of computational speed and convenience, we need to be able to easily
detect this value with data of different types: floating point, integer,
boolean, and general object. In many cases, however, the Python ``None`` will
arise and we wish to also consider that "missing" or "not available" or "NA".

.. note::

   If you want to consider ``inf`` and ``-inf`` to be "NA" in computations,
   you can set ``pandas.options.mode.use_inf_as_na = True``.

.. _missing.isna:

.. ipython:: python

   df = pd.DataFrame(
       np.random.randn(5, 3),
       index=["a", "c", "e", "f", "h"],
       columns=["one", "two", "three"],
   )
   df["four"] = "bar"
   df["five"] = df["one"] > 0
   df
   df2 = df.reindex(["a", "b", "c", "d", "e", "f", "g", "h"])
   df2

To make detecting missing values easier (and across different array dtypes),
pandas provides the :func:`isna` and
:func:`notna` functions, which are also methods on
Series and DataFrame objects:

.. ipython:: python

   df2["one"]
   pd.isna(df2["one"])
   df2["four"].notna()
   df2.isna()

.. warning::

   One has to be mindful that in Python (and NumPy), the ``nan's`` don't compare equal, but ``None's`` **do**.
   Note that pandas/NumPy uses the fact that ``np.nan != np.nan``, and treats ``None`` like ``np.nan``.

   .. ipython:: python

      None == None  # noqa: E711
      np.nan == np.nan

   So as compared to above, a scalar equality comparison versus a ``None/np.nan`` doesn't provide useful information.

   .. ipython:: python

      df2["one"] == np.nan

Integer dtypes and missing data
-------------------------------

Because ``NaN`` is a float, a column of integers with even one missing values
is cast to floating-point dtype (see :ref:`gotchas.intna` for more). pandas
provides a nullable integer array, which can be used by explicitly requesting
the dtype:

.. ipython:: python

   pd.Series([1, 2, np.nan, 4], dtype=pd.Int64Dtype())

Alternatively, the string alias ``dtype='Int64'`` (note the capital ``"I"``) can be
used.

See :ref:`integer_na` for more.

Datetimes
---------

For datetime64[ns] types, ``NaT`` represents missing values. This is a pseudo-native
sentinel value that can be represented by NumPy in a singular dtype (datetime64[ns]).
pandas objects provide compatibility between ``NaT`` and ``NaN``.

.. ipython:: python

   df2 = df.copy()
   df2["timestamp"] = pd.Timestamp("20120101")
   df2
   df2.loc[["a", "c", "h"], ["one", "timestamp"]] = np.nan
   df2
   df2.dtypes.value_counts()

.. _missing.inserting:

Inserting missing data
~~~~~~~~~~~~~~~~~~~~~~

You can insert missing values by simply assigning to containers. The
actual missing value used will be chosen based on the dtype.

For example, numeric containers will always use ``NaN`` regardless of
the missing value type chosen:

.. ipython:: python

   s = pd.Series([1, 2, 3])
   s.loc[0] = None
   s

Likewise, datetime containers will always use ``NaT``.

For object containers, pandas will use the value given:

.. ipython:: python

   s = pd.Series(["a", "b", "c"])
   s.loc[0] = None
   s.loc[1] = np.nan
   s

.. _missing_data.calculations:

Calculations with missing data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Missing values propagate naturally through arithmetic operations between pandas
objects.

.. ipython:: python
   :suppress:

   df = df2.loc[:, ["one", "two", "three"]]
   a = df2.loc[df2.index[:5], ["one", "two"]].fillna(method="pad")
   b = df2.loc[df2.index[:5], ["one", "two", "three"]]

.. ipython:: python

   a
   b
   a + b

The descriptive statistics and computational methods discussed in the
:ref:`data structure overview <basics.stats>` (and listed :ref:`here
<api.series.stats>` and :ref:`here <api.dataframe.stats>`) are all written to
account for missing data. For example:

* When summing data, NA (missing) values will be treated as zero.
* If the data are all NA, the result will be 0.
* Cumulative methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod` ignore NA values by default, but preserve them in the resulting arrays. To override this behaviour and include NA values, use ``skipna=False``.

.. ipython:: python

   df
   df["one"].sum()
   df.mean(1)
   df.cumsum()
   df.cumsum(skipna=False)


.. _missing_data.numeric_sum:

Sum/prod of empties/nans
~~~~~~~~~~~~~~~~~~~~~~~~

.. warning::

   This behavior is now standard as of v0.22.0 and is consistent with the default in ``numpy``; previously sum/prod of all-NA or empty Series/DataFrames would return NaN.
   See :ref:`v0.22.0 whatsnew <whatsnew_0220>` for more.

The sum of an empty or all-NA Series or column of a DataFrame is 0.

.. ipython:: python

   pd.Series([np.nan]).sum()

   pd.Series([], dtype="float64").sum()

The product of an empty or all-NA Series or column of a DataFrame is 1.

.. ipython:: python

   pd.Series([np.nan]).prod()

   pd.Series([], dtype="float64").prod()


NA values in GroupBy
~~~~~~~~~~~~~~~~~~~~

NA groups in GroupBy are automatically excluded. This behavior is consistent
with R, for example:

.. ipython:: python

    df
    df.groupby("one").mean()

See the groupby section :ref:`here <groupby.missing>` for more information.

Cleaning / filling missing data
--------------------------------

pandas objects are equipped with various data manipulation methods for dealing
with missing data.

.. _missing_data.fillna:

Filling missing values: fillna
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:meth:`~DataFrame.fillna` can "fill in" NA values with non-NA data in a couple
of ways, which we illustrate:

**Replace NA with a scalar value**

.. ipython:: python

   df2
   df2.fillna(0)
   df2["one"].fillna("missing")

**Fill gaps forward or backward**

Using the same filling arguments as :ref:`reindexing <basics.reindexing>`, we
can propagate non-NA values forward or backward:

.. ipython:: python

   df
   df.fillna(method="pad")

.. _missing_data.fillna.limit:

**Limit the amount of filling**

If we only want consecutive gaps filled up to a certain number of data points,
we can use the ``limit`` keyword:

.. ipython:: python
   :suppress:

   df.iloc[2:4, :] = np.nan

.. ipython:: python

   df
   df.fillna(method="pad", limit=1)

To remind you, these are the available filling methods:

.. csv-table::
    :header: "Method", "Action"
    :widths: 30, 50

    pad / ffill, Fill values forward
    bfill / backfill, Fill values backward

With time series data, using pad/ffill is extremely common so that the "last
known value" is available at every time point.

:meth:`~DataFrame.ffill` is equivalent to ``fillna(method='ffill')``
and :meth:`~DataFrame.bfill` is equivalent to ``fillna(method='bfill')``

.. _missing_data.PandasObject:

Filling with a PandasObject
~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series
must match the columns of the frame you wish to fill. The
use case of this is to fill a DataFrame with the mean of that column.

.. ipython:: python

        dff = pd.DataFrame(np.random.randn(10, 3), columns=list("ABC"))
        dff.iloc[3:5, 0] = np.nan
        dff.iloc[4:6, 1] = np.nan
        dff.iloc[5:8, 2] = np.nan
        dff

        dff.fillna(dff.mean())
        dff.fillna(dff.mean()["B":"C"])

Same result as above, but is aligning the 'fill' value which is
a Series in this case.

.. ipython:: python

        dff.where(pd.notna(dff), dff.mean(), axis="columns")


.. _missing_data.dropna:

Dropping axis labels with missing data: dropna
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You may wish to simply exclude labels from a data set which refer to missing
data. To do this, use :meth:`~DataFrame.dropna`:

.. ipython:: python
   :suppress:

   df["two"] = df["two"].fillna(0)
   df["three"] = df["three"].fillna(0)

.. ipython:: python

   df
   df.dropna(axis=0)
   df.dropna(axis=1)
   df["one"].dropna()

An equivalent :meth:`~Series.dropna` is available for Series.
DataFrame.dropna has considerably more options than Series.dropna, which can be
examined :ref:`in the API <api.dataframe.missing>`.

.. _missing_data.interpolate:

Interpolation
~~~~~~~~~~~~~

Both Series and DataFrame objects have :meth:`~DataFrame.interpolate`
that, by default, performs linear interpolation at missing data points.

.. ipython:: python
   :suppress:

   np.random.seed(123456)
   idx = pd.date_range("1/1/2000", periods=100, freq="BM")
   ts = pd.Series(np.random.randn(100), index=idx)
   ts[1:5] = np.nan
   ts[20:30] = np.nan
   ts[60:80] = np.nan
   ts = ts.cumsum()

.. ipython:: python

   ts
   ts.count()
   @savefig series_before_interpolate.png
   ts.plot()

.. ipython:: python

   ts.interpolate()
   ts.interpolate().count()

   @savefig series_interpolate.png
   ts.interpolate().plot()

Index aware interpolation is available via the ``method`` keyword:

.. ipython:: python
   :suppress:

   ts2 = ts[[0, 1, 30, 60, 99]]

.. ipython:: python

   ts2
   ts2.interpolate()
   ts2.interpolate(method="time")

For a floating-point index, use ``method='values'``:

.. ipython:: python
   :suppress:

   idx = [0.0, 1.0, 10.0]
   ser = pd.Series([0.0, np.nan, 10.0], idx)

.. ipython:: python

   ser
   ser.interpolate()
   ser.interpolate(method="values")

You can also interpolate with a DataFrame:

.. ipython:: python

   df = pd.DataFrame(
       {
           "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
           "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
       }
   )
   df
   df.interpolate()

The ``method`` argument gives access to fancier interpolation methods.
If you have scipy_ installed, you can pass the name of a 1-d interpolation routine to ``method``.
You'll want to consult the full scipy interpolation documentation_ and reference guide_ for details.
The appropriate interpolation method will depend on the type of data you are working with.

* If you are dealing with a time series that is growing at an increasing rate,
  ``method='quadratic'`` may be appropriate.
* If you have values approximating a cumulative distribution function,
  then ``method='pchip'`` should work well.
* To fill missing values with goal of smooth plotting, consider ``method='akima'``.

.. warning::

   These methods require ``scipy``.

.. ipython:: python

   df.interpolate(method="barycentric")

   df.interpolate(method="pchip")

   df.interpolate(method="akima")

When interpolating via a polynomial or spline approximation, you must also specify
the degree or order of the approximation:

.. ipython:: python

   df.interpolate(method="spline", order=2)

   df.interpolate(method="polynomial", order=2)

Compare several methods:

.. ipython:: python

   np.random.seed(2)

   ser = pd.Series(np.arange(1, 10.1, 0.25) ** 2 + np.random.randn(37))
   missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
   ser[missing] = np.nan
   methods = ["linear", "quadratic", "cubic"]

   df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})
   @savefig compare_interpolations.png
   df.plot()

Another use case is interpolation at *new* values.
Suppose you have 100 observations from some distribution. And let's suppose
that you're particularly interested in what's happening around the middle.
You can mix pandas' ``reindex`` and ``interpolate`` methods to interpolate
at the new values.

.. ipython:: python

   ser = pd.Series(np.sort(np.random.uniform(size=100)))

   # interpolate at new_index
   new_index = ser.index.union(pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]))
   interp_s = ser.reindex(new_index).interpolate(method="pchip")
   interp_s[49:51]

.. _scipy: https://scipy.org/
.. _documentation: https://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
.. _guide: https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

.. _missing_data.interp_limits:

Interpolation limits
--------------------

Like other pandas fill methods, :meth:`~DataFrame.interpolate` accepts a ``limit`` keyword
argument. Use this argument to limit the number of consecutive ``NaN`` values
filled since the last valid observation:

.. ipython:: python

   ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.nan])
   ser

   # fill all consecutive values in a forward direction
   ser.interpolate()

   # fill one consecutive value in a forward direction
   ser.interpolate(limit=1)

By default, ``NaN`` values are filled in a ``forward`` direction. Use
``limit_direction`` parameter to fill ``backward`` or from ``both`` directions.

.. ipython:: python

   # fill one consecutive value backwards
   ser.interpolate(limit=1, limit_direction="backward")

   # fill one consecutive value in both directions
   ser.interpolate(limit=1, limit_direction="both")

   # fill all consecutive values in both directions
   ser.interpolate(limit_direction="both")

By default, ``NaN`` values are filled whether they are inside (surrounded by)
existing valid values, or outside existing valid values. The ``limit_area``
parameter restricts filling to either inside or outside values.

.. ipython:: python

   # fill one consecutive inside value in both directions
   ser.interpolate(limit_direction="both", limit_area="inside", limit=1)

   # fill all consecutive outside values backward
   ser.interpolate(limit_direction="backward", limit_area="outside")

   # fill all consecutive outside values in both directions
   ser.interpolate(limit_direction="both", limit_area="outside")

.. _missing_data.replace:

Replacing generic values
~~~~~~~~~~~~~~~~~~~~~~~~
Often times we want to replace arbitrary values with other values.

:meth:`~Series.replace` in Series and :meth:`~DataFrame.replace` in DataFrame provides an efficient yet
flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another
value:

.. ipython:: python

   ser = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0])

   ser.replace(0, 5)

You can replace a list of values by a list of other values:

.. ipython:: python

   ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])

You can also specify a mapping dict:

.. ipython:: python

   ser.replace({0: 10, 1: 100})

For a DataFrame, you can specify individual values by column:

.. ipython:: python

   df = pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": [5, 6, 7, 8, 9]})

   df.replace({"a": 0, "b": 5}, 100)

Instead of replacing with specified values, you can treat all given values as
missing and interpolate over them:

.. ipython:: python

   ser.replace([1, 2, 3], method="pad")

.. _missing_data.replace_expression:

String/regular expression replacement
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. note::

   Python strings prefixed with the ``r`` character such as ``r'hello world'``
   are so-called "raw" strings. They have different semantics regarding
   backslashes than strings without this prefix. Backslashes in raw strings
   will be interpreted as an escaped backslash, e.g., ``r'\' == '\\'``. You
   should `read about them
   <https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals>`__
   if this is unclear.

Replace the '.' with ``NaN`` (str -> str):

.. ipython:: python

   d = {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
   df = pd.DataFrame(d)
   df.replace(".", np.nan)

Now do it with a regular expression that removes surrounding whitespace
(regex -> regex):

.. ipython:: python

   df.replace(r"\s*\.\s*", np.nan, regex=True)

Replace a few different values (list -> list):

.. ipython:: python

   df.replace(["a", "."], ["b", np.nan])

list of regex -> list of regex:

.. ipython:: python

   df.replace([r"\.", r"(a)"], ["dot", r"\1stuff"], regex=True)

Only search in column ``'b'`` (dict -> dict):

.. ipython:: python

   df.replace({"b": "."}, {"b": np.nan})

Same as the previous example, but use a regular expression for
searching instead (dict of regex -> dict):

.. ipython:: python

   df.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True)

You can pass nested dictionaries of regular expressions that use ``regex=True``:

.. ipython:: python

   df.replace({"b": {"b": r""}}, regex=True)

Alternatively, you can pass the nested dictionary like so:

.. ipython:: python

   df.replace(regex={"b": {r"\s*\.\s*": np.nan}})

You can also use the group of a regular expression match when replacing (dict
of regex -> dict of regex), this works for lists as well.

.. ipython:: python

   df.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True)

You can pass a list of regular expressions, of which those that match
will be replaced with a scalar (list of regex -> regex).

.. ipython:: python

   df.replace([r"\s*\.\s*", r"a|b"], np.nan, regex=True)

All of the regular expression examples can also be passed with the
``to_replace`` argument as the ``regex`` argument. In this case the ``value``
argument must be passed explicitly by name or ``regex`` must be a nested
dictionary. The previous example, in this case, would then be:

.. ipython:: python

   df.replace(regex=[r"\s*\.\s*", r"a|b"], value=np.nan)

This can be convenient if you do not want to pass ``regex=True`` every time you
want to use a regular expression.

.. note::

   Anywhere in the above ``replace`` examples that you see a regular expression
   a compiled regular expression is valid as well.

Numeric replacement
~~~~~~~~~~~~~~~~~~~

:meth:`~DataFrame.replace` is similar to :meth:`~DataFrame.fillna`.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10, 2))
   df[np.random.rand(df.shape[0]) > 0.5] = 1.5
   df.replace(1.5, np.nan)

Replacing more than one value is possible by passing a list.

.. ipython:: python

   df00 = df.iloc[0, 0]
   df.replace([1.5, df00], [np.nan, "a"])
   df[1].dtype

You can also operate on the DataFrame in place:

.. ipython:: python

   df.replace(1.5, np.nan, inplace=True)

Missing data casting rules and indexing
---------------------------------------

While pandas supports storing arrays of integer and boolean type, these types
are not capable of storing missing data. Until we can switch to using a native
NA type in NumPy, we've established some "casting rules". When a reindexing
operation introduces missing data, the Series will be cast according to the
rules introduced in the table below.

.. csv-table::
    :header: "data type", "Cast to"
    :widths: 40, 40

    integer, float
    boolean, object
    float, no cast
    object, no cast

For example:

.. ipython:: python

   s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])
   s > 0
   (s > 0).dtype
   crit = (s > 0).reindex(list(range(8)))
   crit
   crit.dtype

Ordinarily NumPy will complain if you try to use an object array (even if it
contains boolean values) instead of a boolean array to get or set values from
an ndarray (e.g. selecting values based on some criteria). If a boolean vector
contains NAs, an exception will be generated:

.. ipython:: python
   :okexcept:

   reindexed = s.reindex(list(range(8))).fillna(0)
   reindexed[crit]

However, these can be filled in using :meth:`~DataFrame.fillna` and it will work fine:

.. ipython:: python

   reindexed[crit.fillna(False)]
   reindexed[crit.fillna(True)]

pandas provides a nullable integer dtype, but you must explicitly request it
when creating the series or column. Notice that we use a capital "I" in
the ``dtype="Int64"``.

.. ipython:: python

   s = pd.Series([0, 1, np.nan, 3, 4], dtype="Int64")
   s

See :ref:`integer_na` for more.


.. _missing_data.NA:

Experimental ``NA`` scalar to denote missing values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. warning::

   Experimental: the behaviour of ``pd.NA`` can still change without warning.

.. versionadded:: 1.0.0

Starting from pandas 1.0, an experimental ``pd.NA`` value (singleton) is
available to represent scalar missing values. At this moment, it is used in
the nullable :doc:`integer <integer_na>`, boolean and
:ref:`dedicated string <text.types>` data types as the missing value indicator.

The goal of ``pd.NA`` is provide a "missing" indicator that can be used
consistently across data types (instead of ``np.nan``, ``None`` or ``pd.NaT``
depending on the data type).

For example, when having missing values in a Series with the nullable integer
dtype, it will use ``pd.NA``:

.. ipython:: python

    s = pd.Series([1, 2, None], dtype="Int64")
    s
    s[2]
    s[2] is pd.NA

Currently, pandas does not yet use those data types by default (when creating
a DataFrame or Series, or when reading in data), so you need to specify
the dtype explicitly.  An easy way to convert to those dtypes is explained
:ref:`here <missing_data.NA.conversion>`.

Propagation in arithmetic and comparison operations
---------------------------------------------------

In general, missing values *propagate* in operations involving ``pd.NA``. When
one of the operands is unknown, the outcome of the operation is also unknown.

For example, ``pd.NA`` propagates in arithmetic operations, similarly to
``np.nan``:

.. ipython:: python

   pd.NA + 1
   "a" * pd.NA

There are a few special cases when the result is known, even when one of the
operands is ``NA``.

.. ipython:: python

   pd.NA ** 0
   1 ** pd.NA

In equality and comparison operations, ``pd.NA`` also propagates. This deviates
from the behaviour of ``np.nan``, where comparisons with ``np.nan`` always
return ``False``.

.. ipython:: python

   pd.NA == 1
   pd.NA == pd.NA
   pd.NA < 2.5

To check if a value is equal to ``pd.NA``, the :func:`isna` function can be
used:

.. ipython:: python

   pd.isna(pd.NA)

An exception on this basic propagation rule are *reductions* (such as the
mean or the minimum), where pandas defaults to skipping missing values. See
:ref:`above <missing_data.calculations>` for more.

Logical operations
------------------

For logical operations, ``pd.NA`` follows the rules of the
`three-valued logic <https://en.wikipedia.org/wiki/Three-valued_logic>`__ (or
*Kleene logic*, similarly to R, SQL and Julia). This logic means to only
propagate missing values when it is logically required.

For example, for the logical "or" operation (``|``), if one of the operands
is ``True``, we already know the result will be ``True``, regardless of the
other value (so regardless the missing value would be ``True`` or ``False``).
In this case, ``pd.NA`` does not propagate:

.. ipython:: python

   True | False
   True | pd.NA
   pd.NA | True

On the other hand, if one of the operands is ``False``, the result depends
on the value of the other operand. Therefore, in this case ``pd.NA``
propagates:

.. ipython:: python

   False | True
   False | False
   False | pd.NA

The behaviour of the logical "and" operation (``&``) can be derived using
similar logic (where now ``pd.NA`` will not propagate if one of the operands
is already ``False``):

.. ipython:: python

   False & True
   False & False
   False & pd.NA

.. ipython:: python

   True & True
   True & False
   True & pd.NA


``NA`` in a boolean context
---------------------------

Since the actual value of an NA is unknown, it is ambiguous to convert NA
to a boolean value. The following raises an error:

.. ipython:: python
   :okexcept:

   bool(pd.NA)

This also means that ``pd.NA`` cannot be used in a context where it is
evaluated to a boolean, such as ``if condition: ...`` where ``condition`` can
potentially be ``pd.NA``. In such cases, :func:`isna` can be used to check
for ``pd.NA`` or ``condition`` being ``pd.NA`` can be avoided, for example by
filling missing values beforehand.

A similar situation occurs when using Series or DataFrame objects in ``if``
statements, see :ref:`gotchas.truth`.

NumPy ufuncs
------------

:attr:`pandas.NA` implements NumPy's ``__array_ufunc__`` protocol. Most ufuncs
work with ``NA``, and generally return ``NA``:

.. ipython:: python

   np.log(pd.NA)
   np.add(pd.NA, 1)

.. warning::

   Currently, ufuncs involving an ndarray and ``NA`` will return an
   object-dtype filled with NA values.

   .. ipython:: python

      a = np.array([1, 2, 3])
      np.greater(a, pd.NA)

   The return type here may change to return a different array type
   in the future.

See :ref:`dsintro.numpy_interop` for more on ufuncs.

.. _missing_data.NA.conversion:

Conversion
----------

If you have a DataFrame or Series using traditional types that have missing data
represented using ``np.nan``, there are convenience methods
:meth:`~Series.convert_dtypes` in Series and :meth:`~DataFrame.convert_dtypes`
in DataFrame that can convert data to use the newer dtypes for integers, strings and
booleans listed :ref:`here <basics.dtypes>`. This is especially helpful after reading
in data sets when letting the readers such as :meth:`read_csv` and :meth:`read_excel`
infer default dtypes.

In this example, while the dtypes of all columns are changed, we show the results for
the first 10 columns.

.. ipython:: python

   bb = pd.read_csv("data/baseball.csv", index_col="id")
   bb[bb.columns[:10]].dtypes

.. ipython:: python

   bbn = bb.convert_dtypes()
   bbn[bbn.columns[:10]].dtypes