1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
.. _options:
{{ header }}
********************
Options and settings
********************
Overview
--------
pandas has an options API configure and customize global behavior related to
:class:`DataFrame` display, data behavior and more.
Options have a full "dotted-style", case-insensitive name (e.g. ``display.max_rows``).
You can get/set options directly as attributes of the top-level ``options`` attribute:
.. ipython:: python
import pandas as pd
pd.options.display.max_rows
pd.options.display.max_rows = 999
pd.options.display.max_rows
The API is composed of 5 relevant functions, available directly from the ``pandas``
namespace:
* :func:`~pandas.get_option` / :func:`~pandas.set_option` - get/set the value of a single option.
* :func:`~pandas.reset_option` - reset one or more options to their default value.
* :func:`~pandas.describe_option` - print the descriptions of one or more options.
* :func:`~pandas.option_context` - execute a codeblock with a set of options
that revert to prior settings after execution.
.. note::
Developers can check out `pandas/core/config_init.py <https://github.com/pandas-dev/pandas/blob/main/pandas/core/config_init.py>`_ for more information.
All of the functions above accept a regexp pattern (``re.search`` style) as an argument,
to match an unambiguous substring:
.. ipython:: python
pd.get_option("display.chop_threshold")
pd.set_option("display.chop_threshold", 2)
pd.get_option("display.chop_threshold")
pd.set_option("chop", 4)
pd.get_option("display.chop_threshold")
The following will **not work** because it matches multiple option names, e.g.
``display.max_colwidth``, ``display.max_rows``, ``display.max_columns``:
.. ipython:: python
:okexcept:
pd.get_option("max")
.. warning::
Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.
.. ipython:: python
:suppress:
:okwarning:
pd.reset_option("all")
.. _options.available:
Available options
-----------------
You can get a list of available options and their descriptions with :func:`~pandas.describe_option`. When called
with no argument :func:`~pandas.describe_option` will print out the descriptions for all available options.
.. ipython:: python
pd.describe_option()
Getting and setting options
---------------------------
As described above, :func:`~pandas.get_option` and :func:`~pandas.set_option`
are available from the pandas namespace. To change an option, call
``set_option('option regex', new_value)``.
.. ipython:: python
pd.get_option("mode.sim_interactive")
pd.set_option("mode.sim_interactive", True)
pd.get_option("mode.sim_interactive")
.. note::
The option ``'mode.sim_interactive'`` is mostly used for debugging purposes.
You can use :func:`~pandas.reset_option` to revert to a setting's default value
.. ipython:: python
:suppress:
pd.reset_option("display.max_rows")
.. ipython:: python
pd.get_option("display.max_rows")
pd.set_option("display.max_rows", 999)
pd.get_option("display.max_rows")
pd.reset_option("display.max_rows")
pd.get_option("display.max_rows")
It's also possible to reset multiple options at once (using a regex):
.. ipython:: python
:okwarning:
pd.reset_option("^display")
:func:`~pandas.option_context` context manager has been exposed through
the top-level API, allowing you to execute code with given option values. Option values
are restored automatically when you exit the ``with`` block:
.. ipython:: python
with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
print(pd.get_option("display.max_rows"))
print(pd.get_option("display.max_columns"))
print(pd.get_option("display.max_rows"))
print(pd.get_option("display.max_columns"))
Setting startup options in Python/IPython environment
-----------------------------------------------------
Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient.
To do this, create a ``.py`` or ``.ipy`` script in the startup directory of the desired profile.
An example where the startup folder is in a default IPython profile can be found at:
.. code-block:: none
$IPYTHONDIR/profile_default/startup
More information can be found in the `IPython documentation
<https://ipython.org/ipython-doc/stable/interactive/tutorial.html#startup-files>`__. An example startup script for pandas is displayed below:
.. code-block:: python
import pandas as pd
pd.set_option("display.max_rows", 999)
pd.set_option("display.precision", 5)
.. _options.frequently_used:
Frequently used options
-----------------------
The following is a demonstrates the more frequently used display options.
``display.max_rows`` and ``display.max_columns`` sets the maximum number
of rows and columns displayed when a frame is pretty-printed. Truncated
lines are replaced by an ellipsis.
.. ipython:: python
df = pd.DataFrame(np.random.randn(7, 2))
pd.set_option("display.max_rows", 7)
df
pd.set_option("display.max_rows", 5)
df
pd.reset_option("display.max_rows")
Once the ``display.max_rows`` is exceeded, the ``display.min_rows`` options
determines how many rows are shown in the truncated repr.
.. ipython:: python
pd.set_option("display.max_rows", 8)
pd.set_option("display.min_rows", 4)
# below max_rows -> all rows shown
df = pd.DataFrame(np.random.randn(7, 2))
df
# above max_rows -> only min_rows (4) rows shown
df = pd.DataFrame(np.random.randn(9, 2))
df
pd.reset_option("display.max_rows")
pd.reset_option("display.min_rows")
``display.expand_frame_repr`` allows for the representation of a
:class:`DataFrame` to stretch across pages, wrapped over the all the columns.
.. ipython:: python
df = pd.DataFrame(np.random.randn(5, 10))
pd.set_option("expand_frame_repr", True)
df
pd.set_option("expand_frame_repr", False)
df
pd.reset_option("expand_frame_repr")
``display.large_repr`` displays a :class:`DataFrame` that exceed
``max_columns`` or ``max_rows`` as a truncated frame or summary.
.. ipython:: python
df = pd.DataFrame(np.random.randn(10, 10))
pd.set_option("display.max_rows", 5)
pd.set_option("large_repr", "truncate")
df
pd.set_option("large_repr", "info")
df
pd.reset_option("large_repr")
pd.reset_option("display.max_rows")
``display.max_colwidth`` sets the maximum width of columns. Cells
of this length or longer will be truncated with an ellipsis.
.. ipython:: python
df = pd.DataFrame(
np.array(
[
["foo", "bar", "bim", "uncomfortably long string"],
["horse", "cow", "banana", "apple"],
]
)
)
pd.set_option("max_colwidth", 40)
df
pd.set_option("max_colwidth", 6)
df
pd.reset_option("max_colwidth")
``display.max_info_columns`` sets a threshold for the number of columns
displayed when calling :meth:`~pandas.DataFrame.info`.
.. ipython:: python
df = pd.DataFrame(np.random.randn(10, 10))
pd.set_option("max_info_columns", 11)
df.info()
pd.set_option("max_info_columns", 5)
df.info()
pd.reset_option("max_info_columns")
``display.max_info_rows``: :meth:`~pandas.DataFrame.info` will usually show null-counts for each column.
For a large :class:`DataFrame`, this can be quite slow. ``max_info_rows`` and ``max_info_cols``
limit this null check to the specified rows and columns respectively. The :meth:`~pandas.DataFrame.info`
keyword argument ``null_counts=True`` will override this.
.. ipython:: python
df = pd.DataFrame(np.random.choice([0, 1, np.nan], size=(10, 10)))
df
pd.set_option("max_info_rows", 11)
df.info()
pd.set_option("max_info_rows", 5)
df.info()
pd.reset_option("max_info_rows")
``display.precision`` sets the output display precision in terms of decimal places.
.. ipython:: python
df = pd.DataFrame(np.random.randn(5, 5))
pd.set_option("display.precision", 7)
df
pd.set_option("display.precision", 4)
df
``display.chop_threshold`` sets the rounding threshold to zero when displaying a
:class:`Series` or :class:`DataFrame`. This setting does not change the
precision at which the number is stored.
.. ipython:: python
df = pd.DataFrame(np.random.randn(6, 6))
pd.set_option("chop_threshold", 0)
df
pd.set_option("chop_threshold", 0.5)
df
pd.reset_option("chop_threshold")
``display.colheader_justify`` controls the justification of the headers.
The options are ``'right'``, and ``'left'``.
.. ipython:: python
df = pd.DataFrame(
np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
columns=["A", "B", "C"],
dtype="float",
)
pd.set_option("colheader_justify", "right")
df
pd.set_option("colheader_justify", "left")
df
pd.reset_option("colheader_justify")
.. _basics.console_output:
Number formatting
------------------
pandas also allows you to set how numbers are displayed in the console.
This option is not set through the ``set_options`` API.
Use the ``set_eng_float_format`` function
to alter the floating-point formatting of pandas objects to produce a particular
format.
.. ipython:: python
import numpy as np
pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
s / 1.0e3
s / 1.0e6
.. ipython:: python
:suppress:
:okwarning:
pd.reset_option("^display")
Use :meth:`~pandas.DataFrame.round` to specifically control rounding of an individual :class:`DataFrame`
.. _options.east_asian_width:
Unicode formatting
------------------
.. warning::
Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower).
Use only when it is actually required.
Some East Asian countries use Unicode characters whose width corresponds to two Latin characters.
If a DataFrame or Series contains these characters, the default output mode may not align them properly.
.. ipython:: python
df = pd.DataFrame({"国籍": ["UK", "日本"], "名前": ["Alice", "しのぶ"]})
df
Enabling ``display.unicode.east_asian_width`` allows pandas to check each character's "East Asian Width" property.
These characters can be aligned properly by setting this option to ``True``. However, this will result in longer render
times than the standard ``len`` function.
.. ipython:: python
pd.set_option("display.unicode.east_asian_width", True)
df
In addition, Unicode characters whose width is "ambiguous" can either be 1 or 2 characters wide depending on the
terminal setting or encoding. The option ``display.unicode.ambiguous_as_wide`` can be used to handle the ambiguity.
By default, an "ambiguous" character's width, such as "¡" (inverted exclamation) in the example below, is taken to be 1.
.. ipython:: python
df = pd.DataFrame({"a": ["xxx", "¡¡"], "b": ["yyy", "¡¡"]})
df
Enabling ``display.unicode.ambiguous_as_wide`` makes pandas interpret these characters' widths to be 2.
(Note that this option will only be effective when ``display.unicode.east_asian_width`` is enabled.)
However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:
.. ipython:: python
pd.set_option("display.unicode.ambiguous_as_wide", True)
df
.. ipython:: python
:suppress:
pd.set_option("display.unicode.east_asian_width", False)
pd.set_option("display.unicode.ambiguous_as_wide", False)
.. _options.table_schema:
Table schema display
--------------------
:class:`DataFrame` and :class:`Series` will publish a Table Schema representation
by default. This can be enabled globally with the
``display.html.table_schema`` option:
.. ipython:: python
pd.set_option("display.html.table_schema", True)
Only ``'display.max_rows'`` are serialized and published.
.. ipython:: python
:suppress:
pd.reset_option("display.html.table_schema")
|