File: options.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (407 lines) | stat: -rw-r--r-- 12,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
.. _options:

{{ header }}

********************
Options and settings
********************

Overview
--------
pandas has an options API configure and customize global behavior related to
:class:`DataFrame` display, data behavior and more.

Options have a full "dotted-style", case-insensitive name (e.g. ``display.max_rows``).
You can get/set options directly as attributes of the top-level ``options`` attribute:

.. ipython:: python

   import pandas as pd

   pd.options.display.max_rows
   pd.options.display.max_rows = 999
   pd.options.display.max_rows

The API is composed of 5 relevant functions, available directly from the ``pandas``
namespace:

* :func:`~pandas.get_option` / :func:`~pandas.set_option` - get/set the value of a single option.
* :func:`~pandas.reset_option` - reset one or more options to their default value.
* :func:`~pandas.describe_option` - print the descriptions of one or more options.
* :func:`~pandas.option_context` - execute a codeblock with a set of options
  that revert to prior settings after execution.

.. note::

   Developers can check out `pandas/core/config_init.py <https://github.com/pandas-dev/pandas/blob/main/pandas/core/config_init.py>`_ for more information.

All of the functions above accept a regexp pattern (``re.search`` style) as an argument,
to match an unambiguous substring:

.. ipython:: python

   pd.get_option("display.chop_threshold")
   pd.set_option("display.chop_threshold", 2)
   pd.get_option("display.chop_threshold")
   pd.set_option("chop", 4)
   pd.get_option("display.chop_threshold")


The following will **not work** because it matches multiple option names, e.g.
``display.max_colwidth``, ``display.max_rows``, ``display.max_columns``:

.. ipython:: python
   :okexcept:

   pd.get_option("max")


.. warning::

    Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.


.. ipython:: python
   :suppress:
   :okwarning:

   pd.reset_option("all")

.. _options.available:

Available options
-----------------

You can get a list of available options and their descriptions with :func:`~pandas.describe_option`. When called
with no argument :func:`~pandas.describe_option` will print out the descriptions for all available options.

.. ipython:: python

   pd.describe_option()

Getting and setting options
---------------------------

As described above, :func:`~pandas.get_option` and :func:`~pandas.set_option`
are available from the pandas namespace.  To change an option, call
``set_option('option regex', new_value)``.

.. ipython:: python

   pd.get_option("mode.sim_interactive")
   pd.set_option("mode.sim_interactive", True)
   pd.get_option("mode.sim_interactive")

.. note::

   The option ``'mode.sim_interactive'`` is mostly used for debugging purposes.

You can use :func:`~pandas.reset_option` to revert to a setting's default value

.. ipython:: python
   :suppress:

   pd.reset_option("display.max_rows")

.. ipython:: python

   pd.get_option("display.max_rows")
   pd.set_option("display.max_rows", 999)
   pd.get_option("display.max_rows")
   pd.reset_option("display.max_rows")
   pd.get_option("display.max_rows")


It's also possible to reset multiple options at once (using a regex):

.. ipython:: python
   :okwarning:

   pd.reset_option("^display")


:func:`~pandas.option_context` context manager has been exposed through
the top-level API, allowing you to execute code with given option values. Option values
are restored automatically when you exit the ``with`` block:

.. ipython:: python

   with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
       print(pd.get_option("display.max_rows"))
       print(pd.get_option("display.max_columns"))
   print(pd.get_option("display.max_rows"))
   print(pd.get_option("display.max_columns"))


Setting startup options in Python/IPython environment
-----------------------------------------------------

Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient.
To do this, create a ``.py`` or ``.ipy`` script in the startup directory of the desired profile.
An example where the startup folder is in a default IPython profile can be found at:

.. code-block:: none

  $IPYTHONDIR/profile_default/startup

More information can be found in the `IPython documentation
<https://ipython.org/ipython-doc/stable/interactive/tutorial.html#startup-files>`__.  An example startup script for pandas is displayed below:

.. code-block:: python

  import pandas as pd

  pd.set_option("display.max_rows", 999)
  pd.set_option("display.precision", 5)

.. _options.frequently_used:

Frequently used options
-----------------------
The following is a demonstrates the more frequently used display options.

``display.max_rows`` and ``display.max_columns`` sets the maximum number
of rows and columns displayed when a frame is pretty-printed. Truncated
lines are replaced by an ellipsis.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(7, 2))
   pd.set_option("display.max_rows", 7)
   df
   pd.set_option("display.max_rows", 5)
   df
   pd.reset_option("display.max_rows")

Once the ``display.max_rows`` is exceeded, the ``display.min_rows`` options
determines how many rows are shown in the truncated repr.

.. ipython:: python

   pd.set_option("display.max_rows", 8)
   pd.set_option("display.min_rows", 4)
   # below max_rows -> all rows shown
   df = pd.DataFrame(np.random.randn(7, 2))
   df
   # above max_rows -> only min_rows (4) rows shown
   df = pd.DataFrame(np.random.randn(9, 2))
   df
   pd.reset_option("display.max_rows")
   pd.reset_option("display.min_rows")

``display.expand_frame_repr`` allows for the representation of a
:class:`DataFrame` to stretch across pages, wrapped over the all the columns.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(5, 10))
   pd.set_option("expand_frame_repr", True)
   df
   pd.set_option("expand_frame_repr", False)
   df
   pd.reset_option("expand_frame_repr")

``display.large_repr`` displays a :class:`DataFrame` that exceed
``max_columns`` or ``max_rows`` as a truncated frame or summary.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10, 10))
   pd.set_option("display.max_rows", 5)
   pd.set_option("large_repr", "truncate")
   df
   pd.set_option("large_repr", "info")
   df
   pd.reset_option("large_repr")
   pd.reset_option("display.max_rows")

``display.max_colwidth`` sets the maximum width of columns.  Cells
of this length or longer will be truncated with an ellipsis.

.. ipython:: python

   df = pd.DataFrame(
       np.array(
           [
               ["foo", "bar", "bim", "uncomfortably long string"],
               ["horse", "cow", "banana", "apple"],
           ]
       )
   )
   pd.set_option("max_colwidth", 40)
   df
   pd.set_option("max_colwidth", 6)
   df
   pd.reset_option("max_colwidth")

``display.max_info_columns`` sets a threshold for the number of columns
displayed when calling :meth:`~pandas.DataFrame.info`.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10, 10))
   pd.set_option("max_info_columns", 11)
   df.info()
   pd.set_option("max_info_columns", 5)
   df.info()
   pd.reset_option("max_info_columns")

``display.max_info_rows``: :meth:`~pandas.DataFrame.info` will usually show null-counts for each column.
For a large :class:`DataFrame`, this can be quite slow. ``max_info_rows`` and ``max_info_cols``
limit this null check to the specified rows and columns respectively. The :meth:`~pandas.DataFrame.info`
keyword argument ``null_counts=True`` will override this.

.. ipython:: python

   df = pd.DataFrame(np.random.choice([0, 1, np.nan], size=(10, 10)))
   df
   pd.set_option("max_info_rows", 11)
   df.info()
   pd.set_option("max_info_rows", 5)
   df.info()
   pd.reset_option("max_info_rows")

``display.precision`` sets the output display precision in terms of decimal places.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(5, 5))
   pd.set_option("display.precision", 7)
   df
   pd.set_option("display.precision", 4)
   df

``display.chop_threshold`` sets the rounding threshold to zero when displaying a
:class:`Series` or :class:`DataFrame`. This setting does not change the
precision at which the number is stored.

.. ipython:: python

   df = pd.DataFrame(np.random.randn(6, 6))
   pd.set_option("chop_threshold", 0)
   df
   pd.set_option("chop_threshold", 0.5)
   df
   pd.reset_option("chop_threshold")

``display.colheader_justify`` controls the justification of the headers.
The options are ``'right'``, and ``'left'``.

.. ipython:: python

   df = pd.DataFrame(
       np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
       columns=["A", "B", "C"],
       dtype="float",
   )
   pd.set_option("colheader_justify", "right")
   df
   pd.set_option("colheader_justify", "left")
   df
   pd.reset_option("colheader_justify")


.. _basics.console_output:

Number formatting
------------------

pandas also allows you to set how numbers are displayed in the console.
This option is not set through the ``set_options`` API.

Use the ``set_eng_float_format`` function
to alter the floating-point formatting of pandas objects to produce a particular
format.

.. ipython:: python

   import numpy as np

   pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
   s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
   s / 1.0e3
   s / 1.0e6

.. ipython:: python
   :suppress:
   :okwarning:

   pd.reset_option("^display")

Use :meth:`~pandas.DataFrame.round` to specifically control rounding of an individual :class:`DataFrame`

.. _options.east_asian_width:

Unicode formatting
------------------

.. warning::

   Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower).
   Use only when it is actually required.

Some East Asian countries use Unicode characters whose width corresponds to two Latin characters.
If a DataFrame or Series contains these characters, the default output mode may not align them properly.

.. ipython:: python

   df = pd.DataFrame({"国籍": ["UK", "日本"], "名前": ["Alice", "しのぶ"]})
   df

Enabling ``display.unicode.east_asian_width`` allows pandas to check each character's "East Asian Width" property.
These characters can be aligned properly by setting this option to ``True``. However, this will result in longer render
times than the standard ``len`` function.

.. ipython:: python

   pd.set_option("display.unicode.east_asian_width", True)
   df

In addition, Unicode characters whose width is "ambiguous" can either be 1 or 2 characters wide depending on the
terminal setting or encoding. The option ``display.unicode.ambiguous_as_wide`` can be used to handle the ambiguity.

By default, an "ambiguous" character's width, such as "¡" (inverted exclamation) in the example below, is taken to be 1.

.. ipython:: python

   df = pd.DataFrame({"a": ["xxx", "¡¡"], "b": ["yyy", "¡¡"]})
   df


Enabling ``display.unicode.ambiguous_as_wide`` makes pandas interpret these characters' widths to be 2.
(Note that this option will only be effective when ``display.unicode.east_asian_width`` is enabled.)

However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:

.. ipython:: python

   pd.set_option("display.unicode.ambiguous_as_wide", True)
   df


.. ipython:: python
   :suppress:

   pd.set_option("display.unicode.east_asian_width", False)
   pd.set_option("display.unicode.ambiguous_as_wide", False)

.. _options.table_schema:

Table schema display
--------------------

:class:`DataFrame` and :class:`Series` will publish a Table Schema representation
by default. This can be enabled globally with the
``display.html.table_schema`` option:

.. ipython:: python

  pd.set_option("display.html.table_schema", True)

Only ``'display.max_rows'`` are serialized and published.


.. ipython:: python
    :suppress:

    pd.reset_option("display.html.table_schema")